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ABSTRACT 

Over 90% of teens in the United States use the Internet, and many use it 

for social interaction.  Due to the faceless nature of digital communication, 

criminals can easily pose as legitimate users to build friendship and trust with 

potential victims. 

Even though fewer youths are going to chat rooms and talking to people 

they do not know, the number of youths receiving aggressive solicitations for 

offline contact has not declined.  Most sexual solicitations go unreported to law 

enforcement and parents. 

Though it is a crime for an adult to sexually exploit a minor, it is not always 

a crime for teens to solicit other teens.  It would be of great help to law 

enforcement agencies if they could automatically detect adults soliciting teens 

versus teens soliciting other teens in online chat.  This study analyzes the 

effectiveness of different machine learning techniques to distinguish chat 

conversation by teens and adults.  Using proposed techniques, we classified 

teen and adult conversations with an accuracy of 86%.  The goal of this research 

is to build an automatic recognition system of adults conversing with teens, 

capable of detecting predators and alerting agencies or parents of possible 

inappropriate conversations. 
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I. INTRODUCTION  

A. TEENS AND THE INTERNET 

In the United States, 93% of teens use the Internet mostly to gather 

information.  Teens are also increasingly using the Internet for social interaction.  

In the Pew Internet & American Life Project Survey in 2006, 68% of the teens 

surveyed sent or received instant messages (IM) and 18% visited chat rooms.  

The decrease of chat room usage from 55% in 2000 may be due to increased 

awareness of the possible dangers, such as sex crimes, in chat rooms [1]. 

B. INTERNET SAFETY AND LAW ENFORCEMENT 

The second Youth Internet Safety Survey (YISS-2), conducted in 2005 by 

Dr. Janis Wolak, Dr. Kimberly Mitchell, and Dr. David Finkelhor, funded by the 

National Center for Missing & Exploited Children, found that while there was a 

decrease in the proportion of youth receiving solicitations on the Internet, the 

number of dangerous sexual overtures or aggressive solicitations has not 

declined [2].  The study considered aggressive solicitations to be solicitations that 

involved offline contact via mail, telephone or in person or attempts/requests to 

meet offline.  Education and law enforcement may have "deterred the casual 

solicitors, but the not more determined or compulsive solicitors [3]."  Table 1 

contains some of the statistics derived from the YISS-2 survey.  It is interesting to 

note that in a majority of incidents, including aggressive incidents, the solicitors 

were younger than 18-years-old.  Also, in 35% of the aggressive episodes, 

youths did not think the solicitations were serious enough to tell anyone.  If they 

were to tell someone, they were more likely to tell a friend or sibling (29%), rather 

than a parent (18%).  Only 7% of the aggressive solicitations were reported to 

law enforcement, an Internet Service Provider (ISP), or other authority. 



Episode Characteristics
All Incidents 

(n=216)

Aggressive 
Incidents 

(n=68)
Age of Offender
  Younger than 18 Years 43% 44%
  18 to 25 Years 30% 34%
  Older than 25 Years 9% 15%
  Don't know 18% 7%
Incident Known or Disclosed to
  Friend or Sibling 26% 29%
  Parent/Guardian 12% 18%
  Other Adult 2% 3%
  Teacher, Counselor, or other School Personnel 2% 6%
  Law Enforcement, ISP, or other Authority 5% 7%
  Someone Else 4% 6%
  No One 56% 35%
Of Youth Who Did not Tell Anyone, Why Didn't 56% (n=120) 35% (n=24)
  Not Serious Enough 69% 71%
  Afraid 13% 8%
  Thought Might Get in Trouble 9% 8%
  Other 6% 13%  

Table 1.   YISS-2 Internet Sexual Solicitation of Youth (n=1500) [After 2]. 

C. MOTIVATION 

Given that a majority of youths do not think the aggressive solicitations are 

serious enough to report to an adult, let alone law enforcement, it is vital that 

juveniles are educated about the seriousness of the crime.  If such education is 

not available, a method of notifying an adult, ISP, or law enforcement when a 

solicitation occurs would be of great help towards preventing a solicitation from 

turning into something more dangerous. 

Offenders use a teenager’s "developmentally-driven desire for romance 

and interest in sex to manipulate them into meeting them in person” [2].  Though 

most offenders do not deceive victims by posing as another youth, most youths 
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are not certain, or only somewhat aware, of the solicitor’s age.  Not all solicitors 

are adults.  The YISS-2 survey found that there are a substantial number of peer 

solicitations [2]. 

To catch online predators, law enforcement officers or volunteers pose as 

youths in online chat rooms.  Given the limited number of law enforcement 

officers and volunteers, an automated system that detects adults soliciting youths 

would augment the efforts of law enforcement officials.  ISPs could also add such 

a system to parental control features [4]. 

Though it is a crime for adults to exploit a child sexually, depending on 

state laws, it is not always a crime for teens to solicit other teens.  When 

analyzing suspicious chat behavior, it is important that law enforcement officials 

be able to separate the lesser number of cases of adults soliciting teens from the 

much greater number of cases of teens soliciting teens.  The purpose of this 

thesis is to determine the effectiveness of different machine learning techniques 

in detecting teen chat posts from adult chat posts.  The goal of this work is to 

facilitate an automatic recognition system of adults conversing with teens. 

D. ORGANIZATION OF THESIS 

This thesis is organized as follows: 

 Chapter I discusses the role of the Internet and teens, Internet 
safety and the motivation for an automated system that can detect 
adults conversing with teens in online chat. 

 Chapter II contains background information about chat, prior 
research in chat analysis and machine learning techniques used in 
this study. 

 Chapter III explains in detail this study's approach to experiments, 
to include the source of data, classification tasks, feature selection 
and the setup of the experiments. 

 Chapter IV contains the results of the experiments and analysis of 
the results. 

 Chapter V contains concluding remarks and possible areas of 
future research. 
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II. BACKGROUND 

A. ONLINE CHAT 

The Internet Relay Chat (IRC) protocol allows large groups of people to 

converse with each other over the Internet.  IRC uses a network of servers that 

relay messages to each other.  Users connected to one server can communicate 

with other users on different servers in the same network.  These networks can 

contain many chat rooms, known as "channels," and each chat room can contain 

thousands of users.  Chat rooms can be public, where all users can read all chat 

messages, or "private," where users write directly to other specific users only.  

Some of the most popular chat programs are AOL Messenger, Yahoo 

Messenger, and MSN Messenger [5]. 

1. Chat Attributes 

There are three components to a chat message.  The chat participants are 

the first component.  A screen name (made up or actual) identifies a participant, 

and is usually based on the participant's user profile.  The second component 

contains optional information, such as a timestamp to identify when a user wrote 

a message.  The last component is the chat message itself, usually displayed 

after the screen name of the user that typed that message [6].  See Figure 1 for 

an example of a chat dialog with component labels. 



 

Figure 1.   Components of a Chat Message. 

2. Message Attributes 

In [6], Haichao Dong, Aiu Cheung Hui, and Yulan He analyzed 72 pairs of 

MSN Messenger users from June to September 2005.  Those users generated 

33,121 messages during 1,700 conversation sessions.  Dong, Hui, and He found 

that chat language is quite dissimilar from conventional English.  Some of the 

features found in chat are acronyms, short forms, polysemes, synonyms, and 

misspelled words [6]. 

Acronyms are produced by taking the first letter in a sequence of words.  

ASL is the acronym for "Age Sex Location."  Short forms are shortened forms of 

a word—thx for thanks.  Polysemes are words that have more than one meaning.  

Synonyms are words that have the same or similar meaning and could replace 

each other.  Misspelled words occur accidentally, but they could also be 

deliberate.  Writers may write noooooo instead of no to give more emphasis to 

that word. 

Additionally, messages contain icons, both textual and non-textual.  

Textual icons are known as emoticons, e.g.,  " :) "  or  " :( .”  Non-textual icons 

are graphics, such as a picture of a smiley face.  Hyperlinks, mostly to other 
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websites, are also included in messages.  Also, the length of messages tends to 

be short.  In Dong, Hui and He's data set, 91.5% of chat messages are less than 

50 bytes [6].  

B. PRIOR WORK IN CHAT AUTHOR PROFILING 

1. Author Profiling 

Author profiling tries to determine an author's attributes, such as gender, 

age, educational background, and cultural background.  Studies have shown that 

there are differences in communication by different ages, social groups, 

educational levels, and language backgrounds [7–9].  Therefore, it may be 

possible to model those differences, in order to detect the age of an author, 

based on the author's chat behavior. 

2. Machine Learning and Text Analysis 

"Machine learning is programming computers to optimize a performance 

criterion, using example data or past experience [10].”  Past experience or 

sample data generates a pattern matching model that can make predictions 

about unseen data or future actions.  The hope is that the model is a good 

approximation of the world, thus the predictions would be accurate.  To measure 

how well a model performs, the predictions are measured against the actual truth 

in a controlled experiment.  The evaluation measures are usually accuracy, 

precision, recall, and F-score, which are determined by using the number true 

positives, true negatives, false positives, and false negatives.  Section C.4 

contains a more detailed discussion of evaluation measures. 

Machine learning lends itself well to text classification problems.  There 

are many different machine learning algorithms and some of the more common 

ones used to classify text are Naïve Bayes Classifier (NBC), Support Vector 

Machine (SVM), and k Nearest Neighbor (k-NN) [11–13].  These techniques are 

described in [10, 14, 15]. 



Machine learning algorithms build classification models using statistical 

analysis of features in text.  There are four categories of features—lexical, 

syntactic, structural, and content specific [13].  See Table 2 for examples of each.   

 

Feature Category
Lexical Average word/sentence length Vocabulary richness
Syntactic Frequency of function words Use of punctuation

Paragraph length Use of indentation
Use of a greeting statement Use of a farewell statement

Content-specific

Examples

Structural

Frequency of key words  

Table 2.   Categories of Features [From 13]. 

Within each category, there are many types of measures.  In 1998, 

Joseph Rudman estimated authorship analysis applications have used nearly 

1,000 different writing style features [16].  Many measures use word tokens and 

word types.  Types represent the number of unique words in a corpus or 

vocabulary and tokens are the total number words in a corpus or vocabulary. 

3. Prior Analysis of Chat Logs 

Jane Lin tried to determine the gender and age group of an author using a 

NBC [5].  The dataset that she gathered is the same dataset used for this study.  

The dataset is a superset of the NPS Chat Corpus, a corpus of chat logs by 

authors of different ages.  During her data preprocessing, she removed 

documents written by authors of an unknown age.  She kept punctuation marks 

and did not perform stemming, which converts words to their stem (e.g., 

changing the words running, runs, ran, runs to run).  Table 3 contains a summary 

of her training set data.  Her corpus is described in more detail in Chapter III.A.1.  
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Corpus Breakdown Number of Items
Author 2232
Tokens 658668
Types 72104
Sentences 143734
Sentences per Author 64.4
Tokens per Sentence 4.6  

Table 3.   Lin's Training Set [After 5]. 

She used the following features: 

 Emoticon token counts 

 Emoticon types per sentence 

 Punctuation token counts 

 Punctuation types per sentence 

 Average sentence length 

 Average word type count per document 

Appendix F contains her emoticon and punctuation dictionary.   

She set aside 10% of her data as the test set.  Table 4 shows a 

breakdown of the corpus by age group. 

 

Category Training Set Test Set

Teens (13-19) 591 68

20s (20-29) 882 97

30s (30-39) 355 37

40s (40-49) 301 32

50s (50-59) 103 10

Adult (20-59) 1641 176  

Table 4.   Division of Data in Lin's Experiments by Age Group [After 5]. 

Her experiments to classify teens versus 20-year-olds failed to generate 

notable results.  As she compared teens against older and older age groups, 

however, her results monotonically increased until generating an F-score 

measure of 0.932 for teens against 50-year-olds [5].  In her calculations, she 
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used a NBC that included a prior probability and a NBC that did not use the prior 

probability.  Tables 5 and 6 contain the best F-score results for each of her 

classification tasks. 

 

Classification Task Precision Recall F-score
Teens vs. 20s 0.857 0.088 0.160
Teens vs. 30s 0.648 1.000 0.786
Teens vs. 40s 0.687 1.000 0.814
Teens vs. 50s 0.872 1.000 0.932
Under 26 vs. 26 and Older 0.541 1.000 0.702  

Table 5.   Lin's Results from using a NBC with Prior Probability [After 5]. 

Classification Task Precision Recall F-score
Teens vs. 20s 0.422 0.515 0.464
Teens vs. 30s 0.663 0.926 0.773
Teens vs. 40s 0.684 0.956 0.798
Teens vs. 50s 0.865 0.941 0.901
Under 26 vs. 26 and Older 0.530 0.947 0.679  

Table 6.   Lin's Results from Using a NBC without Prior Probability [After 5]. 

Lin concluded that her results were influenced by the prior probability.  

The NBC would predict a test case to be a member of the class with the highest 

prior probability, which is based on the proportion of the class in the training data.  

Though she ran experiments without a prior, the predictions had only slightly 

better F-scores or precision.  Given her results and the characteristics of the 

data, she believed that other machine learning techniques, such as a SVM, or 

bigrams or higher order n-grams might generate better results [5]. 

Kucukyilmaz et al. used different machine learning techniques to predict 

user and message attributes based on online chat and their work is described in 

[11].  They compared the following machine learning algorithms: k-NN, NBC, 

SVM and Patient Rule Induction Method (PRIM).  The attributes predicted were 

gender, age, school, connection domain, receiver, author identity, and day 
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period.  The chat corpus they used was from an inactive chat server, Heaven 

BBS, and the messages were in the Turkish language.  They used both term 

features, and stylistic features.  Their term-based features were single tokens, 

unigrams from the vocabulary of the corpus.  Table 7 contains the stylistic 

features used and possible feature values. 

 

Feature Features in the Category Possible Feature Values
Character usage Frequency of each Character Low, Medium, High
Message length Average Message Length Short, Average, Long
Word length Average Word Length Short, Average, Long
Punctuation Usage Frequency of Punctuation Marks Low, Medium, High
Punctuation Marks A List of 37 Punctuation Marks Exists, Not Exists
Stopword Usage Frequency of Stopwords Low, Medium, High
Stopwords A List of 78 Stopwords Exists, Not Exists
Smiley Uages Frequency of Smileys Low, Medium, High
Smileys A List of 79 Smileys Exists, Not Exists
Vocabulary Richness Number of Distinct Words Poor, Average, Rich  

Table 7.   Features Used in Chat Research by Kucukyilmaz et al. [From 11]. 

In their term-based experiments, they performed three preprocessing 

steps on the data.  The first step cleaned and filtered the data.  They removed 

single word messages, non-alphanumeric characters and terms that were on a 

list of 78 Turkish stop words.  They calculated the term frequency-inverse 

document frequency (tf-idf) values for the remaining terms and used those 

values, also known as tf-idf weighting1, as the feature values.  If the users had 

less than a pre-determined number of terms, those authors were removed. 
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, where  is the number of times term i  

appears in document 

,i jw

j and  is the total number of terms in document ,k jw j .  

, where  is the total number of documents in the corpus and  is the 

number of documents in which term i appears.  See [14] for more information. 
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In the second step, Kucukyilmaz et al. balanced the data sets by selecting 

from each class an equal number of instances with the highest term counts.  To 

balance the instances, each instance was limited to 3,000 terms, and they 

discarded any additional terms. 

In the third step, to reduce the dimensionality of the data set, they retained 

the most discriminative features and discarded the less discriminative features.  

They did this by apply the 2 (CHI square) statistic2 to every term to calculate 

each term's discriminative power. 

In their style-based experiments, they did not remove punctuation marks 

or stop words, which are words that have syntactic functions, but do not 

contribute to content.  Given each user had an almost equal number of features, 

they did not perform any instance balancing. 

Table 8 contains the breakdown of their corpus.  Kucukyilmaz et al. did not 

state the number of tokens in their corpus.  Based on the number of authors 

reported, chat posts and average number of words per post, they had 

approximately 1,603,072 tokens.  

Corpus Breakdown Number of Items
Author 1616
Tokens 1603072 (approximate)
Types 165137
Posts 218742
Posts per Author 160
Words per Post 6.2  

Table 8.   Kucukyimaz, et al. Corpus Breakdown [11]. 

For their experiments predicting birth year before 1976 (inclusive) and 

after 1976 (exclusive), they had 60 authors (30 prior to 1976 and 30 after 1976) 

in their test set.  At the time of their study, people born after 1976, were older 
                                            

2
2

2 ( )

n

Obs Exp

Exp
 

 , where  are observed frequencies of a term and Obs Exp  are the 

expected frequencies of a term.  See [15, 27] for more information. 
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than 24-years old.  In their experiments predicting birth year (1975, 1976, 1977, 

1978), they had 30 authors per year in their test set (120 authors total).  They 

performed 10-fold cross validation, where they set aside a different 10% (with 

replacement) of their corpus data for their test set; they ran all experiments 10 

times, using a different training/test set each time.  Their measure of 

performance for each classifier was accuracy.  Tables 9 and 10 show the 

average accuracy results for their term-based and style-based classification 

experiments. 

 

Classification Task k ‐NN Naïve Bayes PRIM SVM

Birth Year <= 1976 (<= 24 years old) 50.1 60.8 53.8 56.3

Birth Year (1975, 1976, 1977, 1978) 24.0 27.3 20.0 26.5  

Table 9.   Term-Based Classification Accuracy Results by Kucukyilmaz et al. 
[After 11]. 

k ‐NN Naïve Bayes PRIM SVM

Birth Year <= 1976 (<= 24 years old) 50.0 75.4 55.5 48.0

Birth Year (1975, 1976, 1977, 1978) 22.8 37.4 19.9 22.0  

Table 10.   Style-Based Classification Accuracy Results by Kucukyilmaz et al.  
[After 11]. 

They concluded that word choice and writing behavior could predict 

characteristics of chat users and messages.  Like chat by English language 

users, chat by Turkish language users had frequent slang words and 

misspellings.  Style-based feature sets were more effective than term-based 

features in determining the birth year of an author.  In their data set, younger 

users more often had a smaller vocabulary and they preferred using emoticons 

more than older users [11]. 

4. Analysis of Perverted Justice Chat Logs 

Nick Pender used a SVM model and a k-NN classifier to detect online 

sexual predators [4].  His corpus consisted of online chat conversations between 
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sexual predators and pseudo victims, who were adult volunteers posing as 

underage victims.  These volunteers made their conversations with subsequently 

convicted predators available on the Perverted Justice website3. 

His corpus contained 701 text logs, where each log contained all the 

conversations between one pseudo victim and the predator pursuing that victim.  

The log sizes were between 269 and 42,220 words, including timestamps and 

screen names.  The corpus contained 2,603,681 words, including screen names, 

timestamps, misspelled words, and punctuation marks.  Pender divided each text 

log into two files: one file containing all the victim chat posts and another file 

containing all the non-victim chat posts.  After dividing the text logs, he had a 

corpus of 1,402 files.  His training set contained 1,122 files (561 victim/561 non-

victim) and the test set contained 280 files (140 victim/140 non-victim) [4]. 

He used a bag of unigrams, bigrams, and trigrams separately as features.  

In a bag of n-grams, token order is irrelevant, so the trigram the cat sat is the 

same trigram as sat the cat.  Data preprocessing included removal of stop words 

based on the 79 most frequent word types in his corpus.  He further reduced 

dimensionality by performing feature reduction using a combination of document 

frequency and odds ratio of terms.  He created nine feature sets by selecting 

5,000, 7,500, and 10,000 unigrams, bigrams, and trigrams with the highest 

average odds ratios.  For each document in the training and test set, he 

calculated the tf-idf values of the extracted features.  Thus, each document had 

nine different representations, depending on whether unigrams, bigrams, or 

trigrams were the features and the dimensionality of each vector (5,000, 7,500, 

10,000) [4].   

The k-NN classifier used k values of 5, 10, 15, 20, 25, or 30.  The SVM 

model used a linear kernel.  See Table 11 for results of the k-NN classifier and 

Table 12 for results of the SVM model. 

 
3 Freely available from Perverted Justice at http://www.perverted-justice.com/guide/. 



5000 7500 10000

5 0.546 0.586 0.814

10 0.675 0.571 0.854

15 0.607 0.575 0.818

20 0.586 0.561 0.811

25 0.579 0.582 0.818

30 0.571 0.575 0.807

5 0.500 0.500 0.500

10 0.500 0.511 0.500

15 0.582 0.500 0.500

20 0.514 0.500 0.500

25 0.504 0.500 0.675

30 0.500 0.500 0.779

5 0.504 0.500 0.514

10 0.504 0.500 0.871

15 0.500 0.532 0.925

20 0.504 0.507 0.918

25 0.529 0.500 0.936

30 0.511 0.500 0.943

F‐score

Unigram

Bigram

Trigram

Terms k  Value

 

Table 11.   F-score of the k-NN Classifier with Different k Values and 
Dimensions [From 4]. 

5000 7500 10000

Unigram 0.558 0.415 0.415

Bigram 0.575 0.545 0.545

Trigram 0.893 0.908 0.908

F‐score
Feature

 

Table 12.   F-score of the SVM Models with Different Dimensions [From 4]. 

Pender found that with both classifiers, trigrams with the highest 

dimension vector performed the best.  The k-NN classifier performed slightly 

better than the SVM.  When using bigrams, only k values of 25 and 30 and using 

10,000 bigrams produced results better than chance.  This led Pender to suggest 

that words may not be enough to distinguish the conversations, but that word 

phrases (i.e., how words are put together) distinguish conversations [4]. 
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C. MACHINE LEARNING TECHNIQUES 

Though there are many different machine learning algorithms, this paper 

focuses on the two algorithms used in this research, the Naïve Bayes Classifier 

and the Support Vector Machine. 

1. Naïve Bayes Classifier 

The Naïve Bayes Classifier (NBC) is discussed in [5, 10, 14, 15].  It uses 

Bayes' Theorem and makes strong independence assumptions among the data 

being classified.  While these assumptions are almost always false, because of 

them, this probabilistic classifier is very easy to implement. 

Bayes' Theorem is used to derive the conditional probability of an event, 

X , given , based on the probabilities of Y X  and Y  and the probability of Y , 

given X .  Bayes' Theorem is written as 

( ) ( | )
( | )

( )

P X P Y X
P X Y

P Y
 . 

The NBC assumes n random variables for a feature vector, , of f1,…, fn 

features and a random variable, , for classes, the probability of which is 

conditional on the set of features.  Combined with Bayes' theorem, we get 

Fn

C

( ) (F | )
( | F )

(F )
n

n

n

P C P C
P C

P
 . 

If the set of potential classes (i.e., teen, 20s, 30s, 40s, 50s, or adult), C , is 

known, then most probable class, , given , is the one with the highest 

probability, or  

*c Fn

(F | ) ( )
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Because the term  does not change between classes, the argmax 

operator allows one to discard it.  The formula then becomes 

(F )nP

 * arg max (F | ) ( )
i

n i i
c C

c P c


 P c

F

ic

if c

. 

The NBC assumes independence among the features, meaning that each 

element in the feature vector, , is independent to every other element in the 

vector.  This means that 

n

F

(F | ) ( | )
j n

j in i
f

P c P f c


   

so, 

F

* arg max ( ) ( | )
i j n

i j
c C f

c P c P f
 

 
  

 
 . 

In this research, the features are vocabulary terms (e.g., an n-gram).  

Because the vocabulary size can be very large, the probability of a term 

appearing in the vocabulary can be quite small.  Rather than using the probability 

of a feature, given an n-gram, the sum of the log of the probability is used to 

prevent numeric underflow so, 

F

* arg max log ( ) log ( | )
i j n

i j
c C f

c P c P
 

 
  

 
 . 

2. Smoothing 

One of the weaknesses of an NBC is its penalization of terms that do not 

appear in the training set, but do appear in the test set.  Such terms, known as 

zero counts, will have a zero probability.  To deal with that problem, smoothing is 

done to reapportion some probability mass from the more frequent terms to the 
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zero count terms [14].  There are many different smoothing algorithms and this 

research used two of them—Laplace and Witten-Bell smoothing. 

a. Laplace Smoothing 

By giving all token frequency counts an additional count, Laplace 

smoothing reapportions probability mass to the unseen terms.  In an unsmoothed 

estimate, the probability of a term, , is its count, , normalized by the total 

number of tokens, , in the vocabulary: 

it jc

N

( )
i

i
c

P t
N


. 

Since Laplace smoothing adds one to each term's count, the 

normalizing constant must be adjusted.  Because each term's count has been 

increased by one, the normalizing constant's adjustment is the addition of V , the 

size of the vocabulary [14].  The smoothed estimate for a term would then be: 

1
( )

i

Laplace i
c

P t
N V





. 

b. Witten-Bell Smoothing 

Witten-Bell smoothing is discussed in [15, 17].  With this smoothing 

technique, a zero count event's probability is an estimate of the probability of 

seeing a new unseen event as one goes through the training set [15]. 

The probability for a non-zero count term, , is found by the 

following formula, where  is the number of times  has appeared so far;  is 

the number of tokens seen so far; and  is the number of types that have 

appeared so far [17]: 

it

ic it n

v

( ) i
Witten Bell i

c
P t

n v 


. 
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The total probability for new unseen events is [17]: 

( )Witten Bell novel

v
P t

n v 


. 

3. Support Vector Machine 

The Support Vector Machine is discussed in [10, 18–21].  Also known as a 

maximum margin classifier, the SVM tries to find the line between two classes of 

data that maximizes the margin between them.  Because data being classified is 

not always linearly separable (i.e., there does not always exist a line or 

hyperplane which can separate the two classes of data), the data is often 

transformed using a kernel function.  Though there are different types of kernels 

for an SVM, this research used a linear kernel, which does not transform the 

data.  The two classes of data (e.g., teens and adults), are represented by n-

dimensional vectors, where each dimension represents a feature, such as an n-

gram.  Using the training set vectors, the SVM generates the hyperplane (model 

vector) that separates the two classes with the maximum margin.  The test set 

vectors and model vector are then used to determine which side of the 

hyperplane the test vectors lay.  The side that a test vector lies upon is its 

predicted class. 

In Figure 2, both lines H1 and H2 separate the two classes, but line H2 

separates the classes with the maximum margin. 
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Figure 2.   Linear Classification [From 22]. 

Based on the training data, a SVM will find the maximum margin 

hyperplane that separates the two classes.  A maximum margin hyperplane 

exists where the distance from each class' closest data point to the hyperplane is 

as large as possible.  Support vectors are the data points that are on the margin.  

Figure 3 is an example of a hyperplane that creates the maximum margin 

between classes.  Also, in Figure 3, the support vectors are circled.  The 

maximum margin in the figures is the distance between lines l1 and l2. 

 

 

Figure 3.   Linear Separating Hyperplanes. 
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Conversations between different groups can be very similar (e.g., between 

teens and 20s), thus classes are likely to overlap or have a very small margin.  

"Slack variables" compensate for this effect [21].  Appendix A provides further 

details on deriving the maximum margin hyperplane and the slack variables. 

4. Measures of Classification Performance 

a. Precision, Recall, and F-score 

We used precision, recall and F-score measurements to evaluate 

the results of the experiments.  Precision measures the correctness of the 

classifier by measuring the proportion of items the classifier correctly selected 

[15].  In other words, the percentage of chat posts the classifier predicted as 

authored by teens that were actually written by teens.  A precision of 1.00 would 

mean that no adult chat posts were labeled as a teen chat post.  Recall 

measures the proportion of all the targeted items the classifier selected [15].  In 

other words, did the classifier find all the teen chat posts?  A recall of 1.00 would 

mean that all teen chat posts were found.  The formulas for precision and recall 

are as follows: 

TP
Precision

TP FP


  

TP
Recall

TP FN


  

True Positive, number of posts correctly identified as

        authored by a teen

False Positive, number of posts incorrectly identified as

        authored by a teen

False Negative, number of po

TP

FP

FN





 sts incorrectly identified as

        authored by an adult
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An F-score measure is used so that one cannot make trade-offs to 

favor precision at the expense of recall or vice versa.  The F-score is the 

harmonic mean of precision and recall and the formula is as follows, where  is 

for precision and 

P

R  is for recall: 

2
1 1

F score

P R

 


. 

b. Accuracy 

Accuracy is an often-used evaluation measurement.  It calculates 

the percentage of items labeled correctly and the formula for accuracy is 

True Positive, number of posts correctly identified as

        authored by a teen

False Positive, number of posts in correctly identified as

        authored by a teen

Tr

TP TN
Accuracy

TP FP TN FN

TP

FP

TN




  





 ue Negative, number of posts correctly identified as

        authored by an adult

False Negative, number of posts incorrectly identified as

        authored by an adult

FN 

 

Accuracy, however, may not be the best measure to use when the 

number of true negatives can be much greater than the number of true positives.  

Precision and recall are more sensitive to counts of true positives, false positives 

and false negatives, whereas accuracy is not [15].  If teens only wrote 10% of the 

documents in a 100-document corpus and the classifier correctly identified all of 

the documents not written by teens, but only one of the documents written by a 

teen, the accuracy would be 0.910.  The F-score, however, would be 0.182.  The 

accuracy measure is very good, but the classifier had missed 90% of the 
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documents of interest.  In the above situation, if the classifier had not found any 

of the documents written by teens, the accuracy measure would be 0.900, but 

the F-score would be 0.000. 
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III. TECHNICAL APPROACH 

A. SOURCE OF DATA 

1. Lin Chat Corpus 

The chat data used was gathered in 2006 by Lin from a publicly available 

chat host and is described in [5].  Though the chat room server hosted scheduled 

chat rooms and chat rooms for different topics, Lin gathered data from chat 

rooms organized by age to keep topics as general and unbiased as possible.  A 

portion of this data is available as the NPS Chat Corpus.4 

In the Lin corpus, each chat log contains all the chat posts of a unique 

author; each log is labeled by the age of the author (self-reported in the author's 

profile information).  The chat logs contain only the messages written by the 

author and do not contain time stamps or the author's screen name preceding his 

message.  The corpus contains 3,290 unique authors.   

2. Division of Data 

We considered each chat log as a document, and each line in the chat log 

to be an individual post.  All documents by authors of unknown age, and files with 

less than three words, were removed.  Such short chat logs usually only 

contained greetings, and thus did not contain useful information.  This left a total 

of 2,161 documents, each by a unique author, containing 292,831 posts 

comprised of 732,964 tokens and 85,479 word types.  The test set contained 432 

randomly selected documents (20% of total number of documents).  This test set 

was not used for feature selection or training.  See Table 13 for distribution of 

documents by age group. 

 
4 Available for non-commercial, non-profit educational and research use from The NPS Chat 

Corpus at http://faculty.nps.edu/cmartell/NPSChat.htm. 



Category Training Set Test Set
teens (13-19) 465 116
20s (20-29) 689 172
30s (30-39) 259 65
40s (40-49) 235 59
50s (50-59) 80 20
Adult(20-59) 1263 316  

Table 13.   Number of Documents in the Training and Test Set. 

B. CLASSIFICATION TASKS 

Though the exact age of an author is known for each document, authors 

were placed into age groups.  Our task was to determine which age group an 

author belonged.  We performed a binary classification task between teens and a 

specific age group.  There were five classification tasks: 

 Teens versus 20-year-olds 

 Teens versus 30-year-olds 

 Teens versus 40-year-olds 

 Teens versus 50-year-olds 

 Teens versus adults (20–59-year-olds) 

C. FEATURE SELECTION 

Based on Pender's success with an SVM to classify pseudo teens and 

actual adults and Lin's recommendation, we choose not only to use her feature 

set using a SVM, but also to use higher order n-grams on both a SVM and NBC 

[5].  Kucukyilmaz et al. had some success using unigrams with a NBC and SVM, 

so our goal was to improve upon their results using higher order n-grams as well.  

In their stylistic feature set, they did not use actual counts of a feature's 

frequency, but rather threshold values, such as, poor/low/short, medium/average, 

rich/high/long, exists and not exists [11].  The experiments in this research 

explored if it would be more effective to use finer grain analysis; thus, meta-data 

feature values were the actual counts of appearances, rather than threshold 

values. 
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1. Features 

The following word-based features were used: unigrams, bigrams, 

trigrams, and character trigrams.  In addition, we used character 4-grams and 5-

grams in the NBC experiments.  To see if we could improve upon her results with 

a different classifier, we used Lin's feature set (Chapter II.3) in the SVM 

experiments.  We also created a slightly different meta-data feature set 

(described below) for the SVM experiments. 

Unigrams are single tokens (e.g., <a>, <single>, <word>).  Bigrams 

contain two tokens, where order matters (e.g., <two word>, <tokens are>, 

<bigram examples>).  Trigrams contain three tokens, where order matters (e.g., 

<trigrams contain three>, <contain three words>, <words three contain>). 

We used character n-grams, a series of n characters, because they can 

capture indications of style including lexical information, contextual information, 

and use of punctuation.  Additionally, such n-grams are noise tolerant.  When 

texts contain grammatical errors or non-standard use of punctuation (e.g., 

emoticons), character n-grams are not as affected [12].  For example, the words 

misspelled and mispelled would generate many common character trigrams, but 

in a lexically-based representation, they would just be two different types.  The 

character n-gram also captures errors that could be considered an identifying 

feature for a class (e.g., ssp and spe). 

We measured the following meta-data for each document: 

 Capital Letters–Average number of capital of letters per post.  
Measured by adding the total number of capitals in a document and 
dividing by the total number of posts in the document. 

 Unigram Tokens–Average number of tokens per post.  Measured 
by the total number of tokens and dividing by the total number of 
posts in the document.  The posts were not stripped of punctuation 
or emoticons. 
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 Emoticon Types–Average number of emoticon types per post, as a 
measure of emoticons in a document.  This was measured by the 
total number of emoticon types per post and dividing by the total 
number of posts in the document. 

 Word Tokens–The average post length was measured by the total 
number of word tokens divided by the total number of posts.  These 
word tokens were stripped of punctuation and emoticons. 

 Word Types–Measure of richness of vocabulary.  This was 
measured by adding all the word types in a document and then 
dividing by the total number of posts in the document. 

In chat, it is not unusual for people to add letters to words to accentuate 

them, such as spelling the word cool as cool or coooool.  Internet slang may 

misspell words as well.  Instead of cool, some people spell that word as kewl.  

We felt that correcting spelling would remove features that would distinguish 

between different age groups.  We also did not perform stemming, the process of 

reducing words to their stem (e.g., changing the words running, runs, ran, runs to 

run), for the same reason. 

Both Lin and Kucukyilmaz et al. found that the younger the person, the 

more a post contained emoticons and emoticon types [5, 11].  Thus, we kept 

punctuation to maintain emoticons, but conducted all NBC experiments both with 

and without punctuation.  The punctuation marks used are all the possible 

punctuation characters on a standard QWERTY keyboard.  Appendix H contains 

the list of punctuation marks used in this research.  All posts were converted to 

lower case letters to reduce the size of the dictionary.  To account for the use of 

capital letters, we added that feature to the meta-data feature set described 

above. 

The emoticons used in this study are from Wikipedia5.  On that Web site, 

there are two emoticon styles—Eastern and Western.  Eastern style emoticons, 

which originated in East Asia, can be read by a person without having to tilt his 

head [23].  An example of a smile is "(^_^)."  Readers read Western style 

 
5 Freely available from Wikipedia at http://en.wikipedia.org/wiki/List_of_emoticons. 



emoticons from left to right and usually tilt their head to read them.  An example 

of a smile is ":-)."  We limited our emoticons to the Western style type. 

The Lin corpus also includes built-in emoticons specific to the chat server.  

Though there are more built-in emoticons that display colored icons, the list from 

Wikipedia contains the text representation of such emoticons.  Table 14 contains 

the built-in emoticons we added to the dictionary of emoticons.  Appendix G 

contains the full dictionary of emoticons used. 

 

Emoticon

:beer:

:blush:

:love:

:tongue:  

Table 14.   Built-in Emoticons. 

2. Stop Words 

Typically, stop words, which have syntactic functions in English, but do not 

contribute to content, are removed from the vocabulary.  We generated our own 

stop word list, because online chat communication has its own vocabulary and 

does not follow conventional spelling rules.  We used two different methods of 

generating the stop words (actually stop n-grams).  In both the mutual high-

frequency and entropy-based methods, we removed n number of n-grams.  For 

values of n, we used 5, 15, 25, 50, and 75.  The n-grams were found by 

separating words using white space.  Punctuation marks were retained and were 

kept attached to a word if there was not white space separating that word and the 

punctuation mark(s).  Thus, the same word that was found in the middle of a 

sentence and at the end of a sentence was considered two different word types. 
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a. Mutual High-Frequency Stop Words 

The first method, mutual high-frequency stop words, found the n 

most frequently used mutual n-grams between two classes.  So if n=5, then the 

list would contain the five most popular mutual words in the teen and adult 

dictionaries.  

To generate the stop n-gram list for each classification task, we first 

created age group specific n-gram dictionaries with the frequency count for each 

n-gram.  All the dictionaries were then sorted by the frequency of use (token 

count) in descending order.  For each classification task (e.g., teens versus 20s), 

using the sorted dictionaries for each age group, we found the n most mutually 

popular n-grams.  To prevent n-grams from being unfairly chosen (e.g., a mutual 

n-gram has a very high frequency count in one class but a very low frequency 

count in the other class), n-grams selected were within the top 500 most frequent 

n-grams per class. 

As an example, Figure 4 depicts the process to generate the five 

mutual high-frequency unigram list for the teens versus 50s classification task.  

The teen and 50-year-old unigram dictionaries are sorted by token count and the 

most frequent mutual tokens are selected for the stop n-gram list. 



 

Figure 4.   Creating a Mutual High-Frequency Stop N-gram List. 

b. Entropy-Based Stop Words 

The second method used entropy as a measure of information 

gain, that is, how much a given feature contributes to separating the training 

examples into their target classifications [24].  We used the following formula to 

measure the conditional entropy of , the probability of a class given n-

gram : 

( | )iP C n

i

2( ( | )) ( | ) log ( | )i j i

j

H P C n p c n p c n  j i  

The higher the conditional entropy, the more equally distributed the 

n-gram is across the classes and therefore the less discriminative the n-gram is. 

To generate the list for each classification task, we first created age 

group specific n-gram dictionaries with the frequency count for each n-gram.  

Next, for each classification task, we measured the conditional entropy using the 
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applicable age group dictionaries.  The resultant n-grams were sorted in 

descending order by the entropy value.  We then took the n number of n-grams 

needed from the rank ordered list. 

We used this second method because we felt that mutual high-

frequency-based stop n-grams might contain contextual information.  Also, 

different age groups may use mutual n-grams, but one age group might use them 

more frequently than another.  We wanted to see if there was a difference in 

performance using an n-gram's discriminative power versus its high frequency 

count. 

D. EXPERIMENT SETUP 

Figure 5 provides a summary of the process used to set up the 

experiments for each classification task. 

 

Figure 5.   Experiment Process for each Classification Task. 
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1. Data Preprocessing 

We made a pass over the data set for each n-gram size to generate the n-

gram dictionary using a sliding window of one, two, and three tokens.  Tokens 

were delineated by white space, except when generating character grams.  

Character grams included white space as a character token.  When generating n-

grams of size greater than one, we added a beginning of post and end of post 

tag; this captures information about the placement of an n-gram (e.g., how likely 

an n-gram starts or ends a post).  Each n-gram dictionary only contained n-

grams of n size (e.g., trigram dictionary only contained trigrams).  Also, during 

each pass, meta-data features were calculated and stop n-grams removed.  In 

the SVM training data, hapax legomena, n-grams that only appeared once were 

removed in each classification task to reduce dimensionality.  In all the SVM 

experiments, punctuation marks were retained and were kept attached to a word 

if there was not white space separating that word and punctuation mark(s). 

Table 15 shows the resultant number of unigram, bigram, trigram, and 

character trigram tokens (no stop words or entropy-based words removed, hapax 

legomena removed). 

 

Category Unigrams Bigrams Trigrams 3 Character Grams
Teens/Adults 575453 516741 212587 3160572
Teens/20s 323135 287568 115610 1768926
Teens/30s 213909 179526 68153 1187163
Teens/40s 171020 144729 53202 956736
Teens/50s 102152 84576 30724 577130  

Table 15.   Number of n-grams Generated for each SVM Classification Task 
(No Stop Words or Entropy-based Words Removed, Hapax Legomena 

Removed). 

For the NBC, n-gram dictionaries of both word and character grams were 

generated for each age group.  No stop n-grams, however, were removed from 

any dictionary.  Depending on the experiment feature set, either an empty string 

replaced punctuation marks, or punctuation marks were retained in the same 
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Category Unigrams Bigrams Trigrams
Teens 100444 100909 101870

20s 247423 248112 251355
30s 132638 132897 134022
40s 87483 87718 89622
50s 13722 13813 14016
Adult 512376 513639 520418

3 Character Grams 4 Character Grams 5 Character Grams
Teens 527556 527091 526626

20s 1328342 1327653 1326964
30s 714793 714534 714275
40s 479332 479097 478862
50s 82063 81983 81903
Adult 2775440 2774177 2772914  

Table 16.   Number of N-grams Generated for Each Bayesian Model. 

2. Features for each Classifier 

We performed initial experiments using the NBC and a greater number of 

experiments with the SVM. 

a. Naïve Bayes Classifier Features 

 Unigrams/bigrams/trigrams with punctuation and no 
n-grams removed  

 Unigrams/bigrams/trigrams without punctuation and 
no n-grams removed 

 3/4/5 character grams 

b. Support Vector Machine Features 

 Unigrams/bigrams/trigrams with no n-grams removed 
 Unigrams/bigrams/trigrams with entropy-based stop 

n-grams removed 
 Unigrams/bigrams/trigrams with mutual high- 

frequency stop n-grams removed 
 Unigrams/bigrams/trigrams with meta-data features 
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 3 character grams 
 Lin Feature Set 
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3. Naïve Bayes Classifier Setup 

Using the training set data, we created two n-gram dictionaries with token 

counts for each age group.  The token counts were used to calculate the 

conditional probabilities for the NBC.  One n-gram dictionary kept punctuation 

and the other replaced all punctuation with the empty string.  We conducted all 

experiments on both dictionaries.  We used Witten-Bell and Laplace Smoothing 

to assign probability mass to the zero count events, where n-grams appeared in 

the test set, but not in the training set.  For each set of experiments, we applied 

one type of smoothing. 

4. Support Vector Machine Setup 

We used the LIBLINEAR [19] library6 to generate a series of SVM models 

for each classification task.  The models used a linear kernel.  Each model was 

assigned a slack variable using powers of 2 ranging from 2-15 to 215.  To generate 

the vectors for the LIBLINEAR program, we used the n-gram dictionary for each 

classification task (e.g., teens versus 20s).  The n-gram dictionary represented a 

vector of all the n-gram types found in both age groups in the training set.  In 

other words, each n-gram in the dictionary was mapped to a dimension in the 

vector. 

The dictionary vector represented each document in the training and test 

sets.  The value for each dimension was the frequency of the corresponding n-

gram type in the document.  As each document vector was generated, the age 

group of the author was included as a label for that vector.  The test document 

vectors also included the age group, but that label was only used for accounting 

purposes after the prediction was made.  N-grams that occurred in the test set 

but not in the training set were ignored.  For each classification task, training 

 
6 Freely available from LIBLINEAR—A Library for Large Linear Classification at 

http://www.csie.ntu.edu.tw/~cjlin/liblinear/. 
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vectors for both age groups are submitted into the SVM library.  The SVM library 

then generated a model trained for each age group. 

For each classification task's model, a different slack variable was applied 

to each model generated.  Therefore, if the task was to generate a model for 

teens and 20-year-olds using unigram features, we generated 31 different 

models with 31 different slack variables for that one classification task.  Once the 

SVM library generated a model, the test vectors were submitted into that model 

and the model predicted the age group for each test vector. 

Rather than use a model that used both the test and training data to 

generate the entire possible vocabulary of each age group, the models in this 

study only used the training data to generate the vocabulary.  This was done to 

be more representative of chat, where it is likely new words are invented before 

models can be updated with new vocabulary. 

As an example of vector generation, let the training set contain the 

following vocabulary: {the yellow dog chased the yellow cat}.  The n-grams in the 

vocabulary with their frequencies would be mapped to the following unigram 

dictionary with indexes in brackets:  { [0]cat-1, [1]chased-1, [2]the-2, [3]yellow-2 }.  

Let a test document contain the following n-grams: the yellow cat ran into the 

yellow house.  The vector generated for that document would be [ 1, 0, 2, 2 ].  

Dimension 1 of the vector represents cat, which appears once in the document.  

Dimension 2 represents chased, which does not appear in the document.  

Dimension 3 represents the, which appears twice, and dimension 4 represents 

yellow, which appears twice in the document.  Because house, into, and ran are 

not in the vocabulary dictionary, they do not appear in the vector representing the 

test document. 

5. Random Trials 

To test whether or not the models generated were over fitting the data, 10 

random trials were conducted.  In this research, the test set was chosen 
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randomly from 20% of the data set.  This random sub-sampling from the entire 

data set was repeated nine additional times.  For each training/test set, all the 

experiments were performed.  The average of the F-scores was used to rank and 

evaluate each feature set for the classification tasks.  Rather than use all 10 F-

scores generated, the average F-score used all the F-scores except the F-scores 

with the highest and lowest value.  This was done so the average was not as 

affected by outliers. 
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IV. RESULTS AND ANALYSIS 

A. RESULTS 

Both the SVM and NBC models demonstrate that they have the capability 

to distinguish an author's age group.  The SVM model performs slightly better 

than the NBC in all but the teens versus 50s classification task, where the NBC is 

superior.  Also, the SVM model produces significantly better results when 

classifying teens versus adults.  The NBC performs comparably when classifying 

teens versus specific age groups.  Tables 17–20 contain the NBC results and 

Tables 21–25 contain the SVM results.  The tables rank the feature sets by 

average F-score.  In order to exclude outliers, the average F-score was 

calculated without the highest and lowest F-score measure from the 10 random 

trials.  The tables contain the omitted best and worst F-score results from the 10 

random trials.  Appendix D contains the detailed results for the NBC.  Appendix E 

contains the detailed results for the SVM. 

The SVM results in Tables 21–25 show the results from the model with the 

slack variable that produced the best average F-score for that feature set.  The 

value of the slack variable can be found in Appendix E.  In the SVM results 

tables, the left column represents the features used in an experiment and if there 

were any stop n-grams removed or additional meta-data.  The label "unigram (5 

entropy)" represents the experiment where the features were unigrams and five 

entropy-based stop n-grams were removed. 



 

 

 

Classification Task Feature  Precision  Recall F-score Low F-score High F-score w/o high/low

trigram 0.567 0.898 0.438 0.766 0.717
3 character gram 0.439 0.497 0.054 0.818 0.466
unigram 0.482 0.461 0.105 0.827 0.462
4 character gram 0.488 0.411 0.026 0.866 0.433
5 character gram 0.390 0.238 0.000 0.629 0.285
bigram 0.278 0.174 0.038 0.419 0.207
3 character gram 0.804 0.994 0.879 0.899 0.889
bigram 0.790 0.947 0.627 0.903 0.884
4 character gram 0.825 0.932 0.774 0.924 0.880
5 character gram 0.830 0.887 0.561 0.947 0.879
unigram 0.783 0.953 0.707 0.896 0.873
trigram 0.756 0.989 0.844 0.869 0.857
4 character gram 0.921 0.986 0.921 0.970 0.954
5 character gram 0.916 0.985 0.904 0.967 0.953
3 character gram 0.901 0.989 0.915 0.963 0.944
unigram 0.903 0.984 0.890 0.979 0.944
bigram 0.884 0.993 0.905 0.954 0.937
trigram 0.877 0.991 0.900 0.963 0.930
trigram 0.961 0.988 0.957 0.987 0.975
3 character gram 0.911 1.000 0.939 0.967 0.953
unigram 0.904 0.999 0.939 0.955 0.950
bigram 0.899 0.999 0.935 0.963 0.945
4 character gram 0.895 1.000 0.932 0.959 0.945
5 character gram 0.881 0.999 0.924 0.947 0.936
trigram 0.406 0.684 0.245 0.699 0.516
3 character gram 0.364 0.381 0.022 0.730 0.363
unigram 0.365 0.304 0.000 0.814 0.305
4 character gram 0.269 0.190 0.000 0.600 0.199
bigram 0.205 0.134 0.000 0.347 0.157
5 character gram 0.170 0.066 0.000 0.275 0.083

* Average F-score computed without highest and lowest F-score

Teens vs. 30s

Teens vs. 40s

Teens vs. 50s

Teens vs. Adults

Teens vs. 20s

 

Table 17.   Results for NBC with Witten-Bell Smoothing without Punctuation 
(Ranked Average by F-score for each Classification Task). 
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Classification Task Feature  Precision  Recall F-score Low F-score High Average F-score*

trigram 0.559 0.903 0.194 0.764 0.741
3 character gram 0.424 0.483 0.011 0.824 0.452
4 character gram 0.462 0.381 0.025 0.871 0.394
5 character gram 0.398 0.269 0.000 0.752 0.295
unigram 0.335 0.236 0.035 0.611 0.261
bigram 0.283 0.172 0.061 0.383 0.210

5 character gram 0.834 0.901 0.564 0.939 0.889
4 character gram 0.829 0.941 0.771 0.921 0.889
3 character gram 0.804 0.977 0.850 0.903 0.883
bigram 0.765 0.940 0.531 0.885 0.873
unigram 0.780 0.932 0.587 0.899 0.872
trigram 0.749 0.991 0.843 0.867 0.853

5 character gram 0.922 0.985 0.904 0.971 0.956
4 character gram 0.912 0.985 0.907 0.967 0.949
unigram 0.915 0.984 0.908 0.983 0.948
3 character gram 0.884 0.984 0.874 0.947 0.936
bigram 0.870 0.995 0.899 0.950 0.929
trigram 0.840 0.993 0.887 0.939 0.909

trigram 0.953 0.988 0.952 0.979 0.971
unigram 0.901 0.999 0.939 0.955 0.948
3 character gram 0.898 1.000 0.935 0.955 0.946
bigram 0.894 0.999 0.935 0.955 0.943
4 character gram 0.892 1.000 0.932 0.955 0.943
5 character gram 0.888 1.000 0.928 0.951 0.941

trigram 0.452 0.850 0.141 0.712 0.630
3 character gram 0.371 0.398 0.000 0.765 0.376
4 character gram 0.316 0.259 0.000 0.744 0.251
bigram 0.238 0.159 0.021 0.366 0.187
5 character gram 0.277 0.135 0.000 0.610 0.145
unigram 0.201 0.124 0.000 0.376 0.143

* Average F-score computed without highest and lowest F-score

Teens vs. 20s

Teens vs. 30s

Teens vs. 40s

Teens vs. 50s

Teens vs. Adults

 

Table 18.   Results for NBC with Witten-Bell Smoothing with Punctuation 
(Ranked by Average F-score for each Classification Task). 
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Classification Task Feature  Precision  Recall F-score Low F-score High Average F-score*

trigram 0.182 0.029 0.000 0.127 0.047
bigram 0.079 0.003 0.000 0.033 0.004
3 character gram 0.000 0.000 0.000 0.000 0.000
4 character gram 0.000 0.000 0.000 0.000 0.000
5 character gram 0.000 0.000 0.000 0.000 0.000
unigram 0.000 0.000 0.000 0.000 0.000
trigram 0.786 0.907 0.440 0.910 0.875
bigram 0.730 0.709 0.146 0.891 0.744
unigram 0.475 0.230 0.000 0.901 0.235
5 character gram 0.507 0.204 0.000 0.935 0.205
4 character gram 0.385 0.144 0.000 0.922 0.097
3 character gram 0.167 0.067 0.000 0.702 0.023
5 character gram 0.926 0.902 0.405 0.979 0.949
unigram 0.900 0.906 0.338 0.971 0.943
4 character gram 0.905 0.853 0.081 0.983 0.926
bigram 0.844 0.997 0.898 0.928 0.914
trigram 0.817 0.993 0.880 0.913 0.896
3 character gram 0.873 0.759 0.017 0.983 0.814
5 character gram 0.859 1.000 0.921 0.932 0.924
bigram 0.855 1.000 0.921 0.924 0.922
4 character gram 0.855 1.000 0.921 0.928 0.922
trigram 0.858 0.995 0.916 0.928 0.921
3 character gram 0.854 1.000 0.921 0.924 0.921
unigram 0.854 1.000 0.921 0.924 0.921
trigram 0.130 0.005 0.000 0.049 0.006
bigram 0.150 0.002 0.000 0.017 0.002
3 character gram 0.000 0.000 0.000 0.000 0.000
4 character gram 0.000 0.000 0.000 0.000 0.000
5 character gram 0.000 0.000 0.000 0.000 0.000
unigram 0.000 0.000 0.000 0.000 0.000

* Average F-score computed without highest and lowest F-score

Teens vs. 20s

Teens vs. 30s

Teens vs. 40s

Teens vs. 50s

Teens vs. Adults

 

Table 19.   Results for NBC with Laplace Smoothing without Punctuation 
(Ranked by Average F-score for each Classification Task). 
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Classification Task Feature  Precision  Recall F-score Low F-score High Average F-score*

trigram 0.114 0.022 0.000 0.240 0.015
bigram 0.073 0.003 0.000 0.017 0.004
3 character gram 0.000 0.000 0.000 0.000 0.000
4 character gram 0.000 0.000 0.000 0.000 0.000
5 character gram 0.000 0.000 0.000 0.000 0.000
unigram 0.000 0.000 0.000 0.000 0.000
trigram 0.784 0.912 0.520 0.910 0.869
bigram 0.699 0.665 0.144 0.889 0.691
5 character gram 0.513 0.164 0.000 0.779 0.183
unigram 0.406 0.172 0.000 0.839 0.163
4 character gram 0.369 0.055 0.000 0.325 0.073
3 character gram 0.185 0.018 0.000 0.167 0.020
unigram 0.906 0.928 0.548 0.967 0.943
5 character gram 0.920 0.903 0.475 0.971 0.941
bigram 0.850 0.997 0.906 0.935 0.916
trigram 0.827 0.996 0.885 0.921 0.903
4 character gram 0.852 0.797 0.033 0.975 0.855
3 character gram 0.864 0.747 0.017 0.979 0.796
trigram 0.857 0.999 0.916 0.928 0.923
5 character gram 0.857 1.000 0.921 0.928 0.923
bigram 0.855 1.000 0.921 0.924 0.922
4 character gram 0.854 1.000 0.921 0.924 0.921
3 character gram 0.853 1.000 0.921 0.921 0.921
unigram 0.854 1.000 0.921 0.924 0.921
trigram 0.077 0.004 0.000 0.017 0.008
bigram 0.150 0.002 0.000 0.017 0.002
3 character gram 0.000 0.000 0.000 0.000 0.000
4 character gram 0.000 0.000 0.000 0.000 0.000
5 character gram 0.000 0.000 0.000 0.000 0.000
unigram 0.000 0.000 0.000 0.000 0.000

* Average F-score computed without highest and lowest F-score

Teens vs. 30s

Teens vs. 40s

Teens vs. 50s

Teens vs. Adults

Teens vs. 20s

 

Table 20.   Results for NBC with Laplace Smoothing with Punctuation (Ranked 
by Average F-score for each Classification Task). 
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Feature Set Precision Recall F-score Low F-score High Average F-score*
trigram (25 entropy) 0.694 0.777 0.000 0.987 0.769
trigram (15 entropy) 0.695 0.773 0.000 0.987 0.765
trigram (5 entropy) 0.726 0.753 0.000 0.987 0.760
trigram (50 entropy) 0.685 0.784 0.000 0.987 0.754
trigram 0.675 0.779 0.000 0.987 0.744
trigram (75 entropy) 0.676 0.784 0.000 0.987 0.741
bigram (5 stop) 0.726 0.657 0.000 0.991 0.694
unigram (50 stop) 0.705 0.663 0.000 0.987 0.663
bigram (50 stop) 0.705 0.626 0.000 0.966 0.656
bigram (15 stop) 0.674 0.631 0.000 0.862 0.638
bigram (75 stop) 0.670 0.653 0.000 0.938 0.628
bigram (75 entropy) 0.642 0.648 0.000 0.987 0.625
unigram (25 stop) 0.662 0.607 0.000 0.963 0.615
bigram (50 entropy) 0.619 0.665 0.000 0.987 0.614
bigram 0.614 0.674 0.000 0.987 0.611
trigram (75 stop) 0.691 0.655 0.184 0.897 0.609
bigram (25 entropy) 0.603 0.672 0.000 0.987 0.597
bigram (25 stop) 0.663 0.587 0.000 0.983 0.591
bigram (5 entropy) 0.594 0.674 0.000 0.987 0.585
bigram (15 entropy) 0.594 0.673 0.000 0.987 0.584
trigram (5 stop) 0.681 0.553 0.000 0.970 0.581
trigram (15 stop) 0.586 0.591 0.017 0.970 0.576
unigram (75 stop) 0.775 0.526 0.083 0.825 0.551
unigram (75 entropy) 0.576 0.608 0.099 0.762 0.545
trigram (meta-data) 0.669 0.597 0.033 0.954 0.544
3 character (meta-data) 0.584 0.619 0.014 0.971 0.540
trigram (50 stop) 0.565 0.643 0.065 0.952 0.537
unigram 0.551 0.635 0.099 0.762 0.535
unigram (5 entropy) 0.551 0.634 0.099 0.762 0.534
trigram (25 stop) 0.618 0.533 0.111 0.940 0.524
unigram (25 entropy) 0.540 0.634 0.099 0.762 0.521
bigram (meta-data) 0.602 0.556 0.000 0.946 0.516
unigram (15 stop) 0.625 0.584 0.017 0.963 0.515
unigram (15 entropy) 0.532 0.634 0.099 0.762 0.509
unigram (50 entropy) 0.529 0.634 0.099 0.762 0.505
unigram (5 stop) 0.682 0.526 0.079 0.978 0.502
3 character 0.525 0.626 0.021 0.872 0.494
unigram (meta-data) 0.573 0.539 0.058 0.987 0.483
Lin features 0.420 0.469 0.058 0.558 0.468
* Average F-score computed without highest and lowest F-score  

Table 21.   Teens vs. 20s SVM Results (Ranked by Average F-score). 
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Feature Set Precision Recall F-score Low F-score High Average F-score*
bigram (15 stop) 0.880 0.945 0.734 0.991 0.914
bigram (50 stop) 0.878 0.960 0.780 1.000 0.913
unigram (50 stop) 0.865 0.904 0.307 1.000 0.894
bigram (25 stop) 0.857 0.957 0.782 1.000 0.893
bigram (5 stop) 0.876 0.924 0.742 0.996 0.891
trigram (5 stop) 0.880 0.896 0.550 0.987 0.888
unigram (15 stop) 0.884 0.858 0.098 1.000 0.888
bigram (75 stop) 0.862 0.944 0.780 1.000 0.888
trigram (15 stop) 0.870 0.909 0.594 0.982 0.888
unigram (25 stop) 0.894 0.832 0.067 0.978 0.886
trigram (25 stop) 0.829 0.968 0.781 0.975 0.885
bigram (50 entropy) 0.819 0.841 0.094 1.000 0.884
unigram (5 stop) 0.807 0.854 0.088 1.000 0.883
trigram (25 entropy) 0.761 0.872 0.000 0.991 0.882
bigram (25 entropy) 0.819 0.838 0.094 1.000 0.881
trigram (15 entropy) 0.761 0.871 0.000 0.991 0.881
unigram (75 stop) 0.841 0.897 0.098 1.000 0.878
unigram (25 entropy) 0.845 0.860 0.462 1.000 0.865
trigram (50 entropy) 0.731 0.879 0.000 0.991 0.863
trigram (5 entropy) 0.733 0.872 0.000 0.991 0.863
trigram 0.727 0.879 0.000 0.991 0.860
trigram (75 entropy) 0.727 0.879 0.000 0.991 0.860
bigram (75 entropy) 0.787 0.841 0.094 1.000 0.860
unigram (75 entropy) 0.837 0.862 0.462 1.000 0.858
unigram (50 entropy) 0.836 0.862 0.462 1.000 0.858
bigram (15 entropy) 0.785 0.841 0.094 1.000 0.858
bigram (5 entropy) 0.785 0.841 0.094 1.000 0.858
unigram (15 entropy) 0.835 0.861 0.462 1.000 0.856
unigram 0.834 0.859 0.462 1.000 0.855
unigram (5 entropy) 0.834 0.859 0.462 1.000 0.855
bigram 0.790 0.828 0.094 1.000 0.852
trigram (75 stop) 0.764 0.818 0.000 0.996 0.852
trigram (50 stop) 0.810 0.870 0.254 1.000 0.850
3 character 0.740 0.822 0.015 1.000 0.839
3 character (meta-data) 0.710 0.822 0.015 1.000 0.816
bigram (meta-data) 0.759 0.785 0.097 1.000 0.808
unigram (meta-data) 0.750 0.822 0.295 0.987 0.794
Lin features 0.649 0.991 0.777 0.789 0.785
trigram (meta-data) 0.750 0.780 0.050 0.946 0.765
* Average F-score computed without highest and lowest F-score  

Table 22.   Teens vs. 30s SVM Results (Ranked by Average F-score). 
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Feature Set Precision Recall F-score Low F-score High Average F-score*
trigram (75 stop) 0.959 0.995 0.808 1.000 0.991
bigram (75 stop) 0.994 0.902 0.461 1.000 0.980
trigram (25 stop) 0.964 0.969 0.836 1.000 0.977
bigram (50 stop) 0.996 0.893 0.430 1.000 0.976
unigram (75 stop) 0.979 0.936 0.710 1.000 0.975
trigram (15 stop) 0.968 0.951 0.792 1.000 0.974
trigram (50 stop) 0.947 0.984 0.836 1.000 0.974
unigram 0.987 0.893 0.538 1.000 0.962
unigram (5 entropy) 0.987 0.893 0.538 1.000 0.962
unigram (50 stop) 0.989 0.878 0.487 1.000 0.960
unigram (15 entropy) 0.985 0.892 0.538 1.000 0.959
unigram (50 entropy) 0.984 0.892 0.538 1.000 0.959
unigram (75 entropy) 0.984 0.892 0.538 1.000 0.959
bigram (25 stop) 0.965 0.932 0.735 1.000 0.959
trigram 0.950 0.958 0.853 1.000 0.957
trigram (15 entropy) 0.950 0.958 0.853 1.000 0.957
trigram (25 entropy) 0.950 0.958 0.853 1.000 0.957
unigram (25 entropy) 0.987 0.886 0.538 1.000 0.957
trigram (5 entropy) 0.950 0.958 0.856 1.000 0.957
trigram (5 stop) 0.978 0.928 0.833 1.000 0.956
trigram (75 entropy) 0.949 0.957 0.853 1.000 0.956
trigram (50 entropy) 0.950 0.951 0.853 1.000 0.953
bigram (25 entropy) 0.966 0.905 0.594 1.000 0.952
bigram 0.932 0.863 0.094 1.000 0.952
bigram (50 entropy) 0.932 0.863 0.094 1.000 0.952
bigram (15 entropy) 0.965 0.903 0.568 1.000 0.952
bigram (5 entropy) 0.963 0.903 0.568 1.000 0.951
bigram (75 entropy) 0.929 0.863 0.094 1.000 0.950
bigram (15 stop) 0.989 0.870 0.541 1.000 0.947
unigram (25 stop) 0.967 0.798 0.127 1.000 0.910
unigram (15 stop) 0.993 0.798 0.173 1.000 0.910
3 character 0.931 0.832 0.400 1.000 0.907
3 character (meta-data) 0.931 0.832 0.400 1.000 0.907
bigram (5 stop) 0.978 0.837 0.667 1.000 0.902
bigram (meta-data) 0.931 0.820 0.378 0.996 0.896
unigram (meta-data) 0.942 0.803 0.439 1.000 0.877
unigram (5 stop) 0.970 0.772 0.188 1.000 0.877
trigram (meta-data) 0.902 0.792 0.430 1.000 0.846
Lin features 0.728 0.959 0.796 0.867 0.827
* Average F-score computed without highest and lowest F-score  

Table 23.   Teens vs. 40s SVM Results (Ranked by Average F-score). 
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Feature Set Precision Recall F-score Low F-score High Average F-score*
trigram (50 stop) 0.910 0.966 0.589 0.996 0.958
trigram (25 stop) 0.909 0.959 0.583 0.996 0.953
trigram (75 stop) 0.931 0.884 0.366 1.000 0.951
trigram (15 stop) 0.927 0.951 0.736 0.996 0.951
bigram (25 entropy) 0.923 0.892 0.388 0.996 0.946
unigram (75 stop) 0.943 0.921 0.643 1.000 0.945
bigram (75 stop) 0.955 0.904 0.594 1.000 0.945
trigram (5 stop) 0.914 0.932 0.583 0.996 0.935
3 character (meta-data) 0.934 0.913 0.635 1.000 0.932
trigram 0.975 0.831 0.202 1.000 0.925
Lin features 0.814 0.998 0.589 0.928 0.922
bigram (50 entropy) 0.942 0.832 0.245 0.996 0.921
bigram (15 entropy) 0.889 0.886 0.388 0.996 0.917
unigram (50 entropy) 0.951 0.841 0.333 1.000 0.914
bigram (50 stop) 0.922 0.893 0.627 0.996 0.913
bigram (15 stop) 0.946 0.849 0.487 1.000 0.913
bigram 0.880 0.890 0.388 0.996 0.910
trigram (25 entropy) 0.938 0.834 0.202 1.000 0.903
unigram 0.908 0.891 0.657 0.991 0.900
unigram (5 entropy) 0.908 0.890 0.655 0.991 0.899
unigram (15 entropy) 0.898 0.897 0.590 0.991 0.898
unigram (25 entropy) 0.933 0.851 0.636 0.991 0.898
bigram (5 entropy) 0.912 0.891 0.586 1.000 0.896
trigram (15 entropy) 0.936 0.827 0.202 1.000 0.896
bigram (75 entropy) 0.868 0.887 0.388 0.991 0.895
unigram (50 stop) 0.904 0.891 0.522 0.996 0.894
3 character 0.930 0.845 0.519 0.967 0.892
trigram (5 entropy) 0.914 0.826 0.202 1.000 0.872
bigram (25 stop) 0.919 0.778 0.050 0.996 0.871
trigram (50 entropy) 0.915 0.823 0.202 1.000 0.870
trigram (75 entropy) 0.921 0.814 0.202 1.000 0.865
unigram (25 stop) 0.916 0.787 0.159 0.996 0.848
unigram (5 stop) 0.911 0.792 0.188 0.991 0.847
unigram (meta-data) 0.882 0.747 0.092 0.996 0.823
unigram (75 entropy) 0.886 0.797 0.188 0.996 0.823
unigram (15 stop) 0.872 0.779 0.162 0.996 0.805
bigram (meta-data) 0.887 0.775 0.435 1.000 0.800
trigram (meta-data) 0.899 0.709 0.307 0.983 0.760
bigram (5 stop) 0.867 0.730 0.120 1.000 0.738
* Average F-score computed without highest and lowest F-score  

Table 24.   Teens vs. 50s SVM Results (Ranked by Average F-score). 
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Feature Set Precision Recall F-score Low F-score High Average F-score*
unigram (5 stop) 0.846 0.772 0.114 0.991 0.786
bigram (15 stop) 0.709 0.821 0.033 0.996 0.766
bigram (5 stop) 0.686 0.821 0.038 1.000 0.757
trigram 0.647 0.870 0.025 1.000 0.756
trigram (5 entropy) 0.644 0.870 0.025 1.000 0.754
trigram (75 entropy) 0.646 0.868 0.026 1.000 0.753
trigram (50 entropy) 0.645 0.856 0.026 1.000 0.745
trigram (5 stop) 0.682 0.855 0.167 0.991 0.743
trigram (15 entropy) 0.646 0.844 0.025 1.000 0.737
unigram (15 stop) 0.742 0.754 0.000 1.000 0.735
trigram (25 entropy) 0.654 0.822 0.000 1.000 0.734
trigram (50 stop) 0.778 0.832 0.294 0.991 0.732
bigram (25 stop) 0.648 0.850 0.031 1.000 0.729
bigram (50 stop) 0.671 0.812 0.014 1.000 0.728
trigram (15 stop) 0.686 0.803 0.044 1.000 0.721
unigram (75 stop) 0.689 0.780 0.000 1.000 0.720
bigram (75 stop) 0.631 0.854 0.000 1.000 0.716
trigram (25 stop) 0.749 0.829 0.294 0.987 0.708
trigram (75 stop) 0.782 0.797 0.294 1.000 0.705
bigram (25 entropy) 0.727 0.828 0.294 1.000 0.700
unigram (25 stop) 0.702 0.733 0.000 1.000 0.698
bigram (50 entropy) 0.723 0.832 0.294 1.000 0.698
bigram (5 entropy) 0.722 0.828 0.294 1.000 0.694
bigram 0.716 0.834 0.294 1.000 0.692
bigram (75 entropy) 0.711 0.828 0.294 1.000 0.688
bigram (15 entropy) 0.710 0.828 0.294 1.000 0.686
unigram (50 stop) 0.683 0.737 0.000 0.996 0.679
unigram (50 entropy) 0.713 0.733 0.174 1.000 0.670
unigram (5 entropy) 0.707 0.730 0.138 0.996 0.670
unigram (15 entropy) 0.702 0.728 0.112 0.996 0.670
unigram 0.706 0.729 0.138 0.996 0.669
unigram (25 entropy) 0.702 0.714 0.112 0.996 0.660
unigram (75 entropy) 0.692 0.728 0.138 0.996 0.659
unigram (meta-data) 0.680 0.701 0.067 1.000 0.640
trigram (meta-data) 0.540 0.785 0.029 0.996 0.640
bigram (meta-data) 0.651 0.740 0.191 0.996 0.584
3 character (meta-data) 0.633 0.627 0.067 1.000 0.543
3 character 0.622 0.627 0.067 0.960 0.541
Lin features 0.432 0.361 0.199 0.921 0.327
* Average F-score computed without highest and lowest F-score  

Table 25.   Teens vs. Adults SVM Results (Ranked by Average F-score). 
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B. ANALYSIS 

The following section contains analysis of the NBC's and SVM's 

performance.  As part of the SVM discussion, the two different types of stop n-

gram lists are compared and the addition of meta-data is discussed.  When 

analyzing the effect of stop n-grams and meta-data, we compare the results from 

the base n-gram feature (no n-grams removed or addition of meta-data) to the 

results from the n-gram feature with stop n-grams or meta-data.  For example, 

the result from the "unigram (5 entropy)" feature set experiment is compared to 

"unigram" experiment.  As a follow-up to Lin's recommendation to use a SVM, 

this section also contains a comparison between the SVM and NBC, using her 

features [5]. 

1. Naïve Bayes Classifier 

The NBC model with Witten-Bell smoothing performs better than the 

model with Laplace smoothing.  One of the weaknesses of Laplace smoothing 

manifests when data is sparse; too much probability mass is given to the zero 

count events.  With more than 85,000 types in the vocabulary and an average of 

339.2 tokens per author, the data for this experiment is very sparse. 

The NBC most likely does not do as well when classifying teens against 

adults, because of the unbalanced data set.  Unbalanced data sets cause undue 

influence of the prior probability.  The prior probability favors adults because of 

the greater number of adult authors in the training set.  In the training set, more 

than 73% of the authors are adults (Table 13).  Also, the distribution of n-grams 

favor adults as well, where over 80% of n-gram types in the training set were 

written by adults (Table 16). 

Using style-based features, Kucukyilmaz et al. had an accuracy result of 

0.754, when comparing people age 24 and under to people older than 24 [11].  

That result is better than this research's best NBC accuracy result (0.698) 

comparing teens against adults.  Term-based results (unigram) in this research 
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generated a better accuracy (0.696) than the unigram NBC results (0.608) [11] of 

Kucukyilmaz et al.  Term-based features were more distinguishing than style-

based features in the data set used for this research.  There may be differences 

between term/style features in the Turkish language, compared to the English 

language, making style-based features more distinctive than term-based 

features. 

The results, however, may not be directly comparable, because our 

experiments did not separate authors at the age of 24.  Because of the closeness 

in age to teens, including authors of age 20–24 in the younger age group, this 

may have made the classification task easier. 

Another difference in the setup of experiments, Kucukyilmaz et al. used 

categories defined by thresholds as values for their features (e.g., 

low/medium/high, exist/not exist, short/average/long, rich/poor/average) instead 

of actual style frequency counts [11].  By having such values, they did not have 

to deal with sparse vectors, which may have led to the better results for their 

NBC with Laplace smoothing.  They also balanced their data set, so they did not 

have the problem of an unbalanced data set, where the prior probability can have 

caused undue influence.  Future experiments using a balanced data set, term-

based features, and collapsing the frequency count to categories for style-based 

features could improve performance of the NBC. 

When classifying teens against 20s, 30s, 40s, and 50s, higher order n-

grams, to include character grams, performed better than Lin's feature set of 

punctuation marks and emoticons.  Given the better results, especially when 

classifying teens against 20-year-olds, it appears that context is a necessary 

feature.  Lin had compared people age 25 and under against people older than 

25 (0.702 F-score) [11], so one cannot directly compare the best result from the 

NBC teens versus adults classification in this experiment (0.630 F-score). 

 

 



Arguably, a teen's vocabulary is more likely to be similar to people in their early 

20s, so the teen versus adult classification task in this experiment is more 

difficult. 

2. Support Vector Machine 

The SVM model performs slightly better than the NBC in all age group 

classification tasks, except in the teens versus 50s task.  It performs significantly 

better when classifying teens versus adults.  The SVM is better able to overcome 

the unbalanced data problem with that classification task.  There is, however, 

great variation in F-score results between the different random trials, especially in 

the teens versus 20s classification task. 

A possible reason for the variation could be that the training set for the 20-

year-olds contains a disproportionate distribution of authors within the age group.  

Thus, if there were not enough text written by people in their early 20s in the 

training set, the SVM model would be poorly trained, and could misidentify 

authors in their early 20s as teenagers.  Table 26 contains the distribution of the 

authors in the 20-year-old age group, for each random trial's training set.  Table 

27 contains the combined file sizes (bytes) of authors of age 20 and 21; 20 to 24; 

and 25 to 29 in each random training set.  Sets 7 and 8 are in bold because 

those two sets caused the worst performance in the SVM models. 

 

Age Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10
20 80 78 77 82 76 73 79 78 78 78
21 98 96 101 93 94 97 96 97 101 99
22 82 81 84 86 85 84 86 83 83 78
23 65 68 66 67 65 70 71 66 70 69
24 61 62 65 67 64 64 60 66 61 64
25 80 84 80 77 82 80 79 81 71 83
26 69 72 65 67 75 67 70 66 65 64
27 65 63 61 61 65 58 56 60 65 68
28 57 51 52 55 51 56 56 56 57 53
29 32 34 38 34 32 40 36 36 38 33  

Table 26.   Distribution of Authors in the 20s Age Group per Random Training 
Data Set. 
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Age Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10
20-21 229118 221011 229272 240508 188378 232550 203907 248338 201428 215699
20-24 704722 751978 607157 707521 726645 616140 727175 713301 715451 671532
25-29 623620 559732 624152 601768 714411 602779 545940 616241 676997 548478
20-29 1328342 1311710 1231309 1309289 1441056 1218919 1273115 1329542 1392448 1220010  

Table 27.   Combined File Sizes (Bytes) of Authors of Ages 20 to 21, 20 to 24 
and 25 to 29 per Random Training Set. 

Based on a visual inspection of Table 26, there did not seem to be a 

disproportionate distribution of authors in the different random training sets.  

Table 27 does not indicate that there is a correlation between the amount of text 

per age group and the poor performance of training sets 7 and 8. 

Tables 28 and 29 contain the distribution of the teen authors in the teen 

age group and the combined file sizes (bytes) of ages 13 to 17; 18 and 19; and 

13 to 19.  The distribution of files by 18- and 19-year-olds is shown, because 

those authors are more likely to be similar to 20-year-olds.  Again, training sets 7 

and 8 are highlighted, because they were the worst performing data sets. 

 

Age Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10
13 7 4 6 7 6 5 6 5 5 6
14 43 37 38 42 42 38 37 35 30 38
15 51 47 52 48 47 56 51 49 56 52
16 79 86 80 83 77 87 83 82 82 79
17 60 67 70 72 72 69 76 76 66 66
18 114 107 116 109 109 104 104 115 110 112
19 111 117 103 104 112 106 108 103 116 112  

Table 28.   Distribution of Teen Authors in Random Training Sets. 

Age Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10
13-17 218834 196569 230844 238519 206102 235757 212591 199877 210643 213696
18-19 308722 266865 292824 212081 297161 312138 318179 218427 247682 330006
13-19 527556 463434 523668 450600 503263 547895 530770 418304 458325 543702  

Table 29.   Combined File Sizes (Bytes) of Authors of Ages 13 to 17, 18 to 19, 
and 13–19 per Random Training Set. 
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Similar to the 20-year-olds, the distribution of ages in the random training 

data sets is nearly balanced.  The combined file size of training set 8, however, is 

significantly less than the other training sets.  In set 8, there may not be enough 

teen training data to adequately train the SVM model, thus causing the extremely 

poor performance in the teens versus 20s classification task.  The size of training 

set 7 is similar to the other training sets, so in this case, the n-grams themselves 

may be the cause of the poor performance and not the amount of text available 

to train the model. 

Compared to the SVM model Kucukyilmaz et al. generated, the SVM 

model in this research has an improved accuracy result, when comparing teens 

against adults using unigrams as features.  Their accuracy was 0.563 [11] and 

the SVM model in our experiments had an accuracy of 0.780 when using 

unigrams as features.  Higher order n-grams perform even better.  The results 

may not be directly comparable because our experiments did not include people 

age 24 and under in the younger age data set.   

We believe that including people in their early 20s, as part of the teen data 

set, makes the classification task easier, because of the similarity of 

conversations by teens and people in their early 20s.  To verify this, we relaxed 

the definition of a teen to be someone between the ages of 13–21, because 

some 20- and 21-year-olds may converse more like a teen.  Similarly, we relaxed 

the definition of the 20s age group to be someone between the ages of 18–29.  

Some 18- and 19-year-olds may be more mature and have more adult-like 

conversations.  In the teens versus 20s classification task, using the relaxed age 

groups improved the average F-score by 0.121.  Table 30 shows the F-score 

results for each feature set in the teens versus 20s classification task, using the 

strict definition of the 20s age group (20–29) and the relaxed definition of the 

teens/20s age group.   
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Strict Relaxed

Precision Recall Precision Recall F‐score F‐score

Trigram (50 entropy) 0.685 0.784 0.796 0.833 0.754 0.845 0.091

Trigram (75 entropy) 0.676 0.784 0.795 0.833 0.741 0.844 0.103

Trigram (25 entropy) 0.694 0.777 0.789 0.833 0.769 0.841 0.072

Trigram (15 entropy) 0.695 0.773 0.790 0.828 0.765 0.838 0.073

Trigram (5 entropy) 0.726 0.753 0.789 0.828 0.760 0.838 0.078

Trigram 0.675 0.779 0.789 0.828 0.744 0.838 0.093

Unigram (50 mutual) 0.705 0.663 0.805 0.721 0.663 0.783 0.120

Bigram (5 mutual) 0.726 0.657 0.776 0.732 0.694 0.780 0.086

Bigram (25 mutual) 0.663 0.587 0.800 0.734 0.591 0.770 0.179

Bigram (15 mutual) 0.674 0.631 0.806 0.705 0.638 0.750 0.112

Trigram (75 mutual) 0.691 0.655 0.774 0.769 0.609 0.740 0.131

Bigram (50 mutual) 0.705 0.626 0.798 0.698 0.656 0.733 0.078

Unigram (75 mutual) 0.775 0.526 0.884 0.636 0.551 0.725 0.174

Bigram (75 mutual) 0.670 0.653 0.751 0.706 0.628 0.724 0.096

Unigram (25 mutual) 0.662 0.607 0.771 0.659 0.615 0.718 0.103

Trigram (5 mutual) 0.681 0.553 0.753 0.681 0.581 0.701 0.120

Bigram (75 entropy) 0.642 0.648 0.698 0.714 0.625 0.697 0.073

Bigram 0.614 0.674 0.698 0.714 0.611 0.697 0.086

Bigram (5 entropy) 0.594 0.674 0.698 0.714 0.585 0.697 0.112

Bigram (50 entropy) 0.619 0.665 0.698 0.713 0.614 0.697 0.083

Bigram (25 entropy) 0.603 0.672 0.698 0.713 0.597 0.696 0.099

Bigram (15 entropy) 0.594 0.673 0.698 0.713 0.584 0.696 0.113

Trigram (15 mutual) 0.586 0.591 0.702 0.705 0.576 0.694 0.119

Trigram (50 mutual) 0.565 0.643 0.697 0.755 0.537 0.693 0.156

Unigram 0.551 0.635 0.711 0.696 0.535 0.681 0.146

Unigram (5 entropy) 0.551 0.634 0.703 0.696 0.534 0.681 0.147

Unigram (25 entropy) 0.540 0.634 0.670 0.717 0.521 0.680 0.159

Unigram (15 entropy) 0.532 0.634 0.670 0.717 0.509 0.680 0.171

Unigram (75 entropy) 0.576 0.608 0.668 0.717 0.545 0.678 0.133

Unigram (50 entropy) 0.529 0.634 0.668 0.717 0.505 0.678 0.173

Trigram (meta‐data) 0.669 0.597 0.763 0.679 0.544 0.668 0.123

Unigram (15 mutual) 0.625 0.584 0.754 0.630 0.515 0.660 0.145

3 Character (meta‐data) 0.584 0.619 0.680 0.720 0.540 0.657 0.117

3 Character 0.525 0.626 0.680 0.720 0.494 0.657 0.163

Unigram (5 mutual) 0.682 0.526 0.778 0.607 0.502 0.655 0.153

Lin Features 0.420 0.469 0.608 0.728 0.468 0.652 0.184

Trigram (25 mutual) 0.618 0.533 0.688 0.663 0.524 0.642 0.117

Bigram (meta‐data) 0.602 0.556 0.684 0.650 0.516 0.617 0.100

Unigram (meta‐data) 0.573 0.539 0.681 0.638 0.483 0.615 0.132

Change in

F‐score

RelaxedStrict
Feature Set

 

Table 30.   Comparison of Performance when Classifying Teens Versus 20s 
Using Strict and Relaxed Teen Age Groups (Ranked by Relaxed F-score). 



Because there is such similarity in the conversations, both age groups 

may occupy the same vector space area, so a linear kernel may not produce the 

best separation even with different slack variables.  Given the success of the 

SVM with the 30s, 40s, and 50s age group, it demonstrated that is has the 

capability of distinguishing age groups.  Future experiments using a different 

kernel type (e.g., polynomial or radial), may generate better results for the teens 

versus 20s/adult classification task. 

3. Entropy-Based Stop Words 

The entropy-based stop words generated were dissimilar from the mutual 

high-frequency stop words generated.  Table 31 contains the first 10 high- 

frequency-based stop words and entropy-based stop words generated from the 

first random training set.  These stop words were used to classify teens versus 

adults with unigrams as the feature.  In general, there were only a few cases 

where an intersection occurred between the entropy-based lists and the high-

frequency-based lists.  Table 32 contains the set of the intersections that 

occurred in the random training data sets.  In some data sets, some, but not all, 

the n-grams listed intersected. 

 

High-Frequency n-gram Token Count Entropy n-gram Token Count

i 15318 hoho. 2

lol 12740 hops 4

the 9768 late. 4
a 9260 overweight 2
to 9258 hustla 18

you 7847 pie. 2
and 6366 object 2

is 6115 dosent 3

.action 5566 scott, 2
hi 5137 ours 2  

Table 31.   Comparison of High-Frequency and Entropy-Based Stop Unigrams 
and Their Usage. 
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Age Classification Unigrams Bigrams Trigrams

Teens/30s
I

up
you

<post> im a
<post> im not

Teens/40s

is
up

what
yes

I can
on the

I want to
have a good

<post> who is
<post> what are

<post> ;-) </post>

Teens/50s

go
hi
not
too
yes

<post> any ladies
<post> lol @

<post> what is

 

Table 32.   Intersection of High-Frequency and Entropy-Based Stop N-grams. 

In almost all stop n-gram lists, the entropy of the n-gram was one—an 

even distribution of the n-grams between the teen and older age group class.  

There were three cases where an n-gram's entropy value was less than one.  In 

the Unigram (75 entropy) features set, there were unigrams with an entropy of 

0.985 that were removed.  In the Trigram (50 entropy) and the Trigram (75 

entropy) feature sets, there were trigrams removed with an entropy value as low 

as 0.971 and 0.896 respectively.  In those three instances, the removal of n-

grams with entropy lower than 1.000 caused greater degradation to the F-score, 

compared to the other cases where only n-grams with entropy of one were 

removed.  Table 33 shows the difference in F-score from the feature sets that 

had entropy-based n-grams removed to the feature sets that had no n-grams 

removed.  In the table, the F-score is the average F-score calculated without the 

highest and lowest F-score measure from the 10 random trials.  Table 33 also 

bolds the experiment results where n-gram entropy values were less than 1.000.  

Appendix B contains the lists of the 75 entropy-based stop n-grams generated for 

the seventh random data set, which contained n-grams with entropy values of 

less than 1.000. 
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F-score Difference F-score Difference F-score Difference F-score Difference F-score Difference

Unigram 0.535 0.000 0.855 0.000 0.962 0.000 0.900 0.000 0.669 0.000

Unigram (5 entropy) 0.534 -0.001 0.855 0.000 0.962 0.000 0.899 -0.001 0.670 0.001

Unigram (15 entropy) 0.509 -0.026 0.856 0.001 0.959 -0.002 0.898 -0.002 0.670 0.001

Unigram (25 entropy) 0.521 -0.015 0.865 0.010 0.957 -0.005 0.898 -0.002 0.660 -0.008

Unigram (50 entropy) 0.505 -0.031 0.858 0.003 0.959 -0.003 0.914 0.013 0.670 0.001

Unigram (75 entropy) 0.545 0.010 0.858 0.003 0.959 -0.003 0.823 -0.078 0.659 -0.010

Bigram 0.611 0.000 0.852 0.000 0.952 0.000 0.910 0.000 0.692 0.000

Bigram (5 entropy) 0.585 -0.026 0.858 0.005 0.951 -0.001 0.896 -0.014 0.694 0.002

Bigram (15 entropy) 0.584 -0.028 0.858 0.005 0.952 0.000 0.917 0.008 0.686 -0.006

Bigram (25 entropy) 0.597 -0.014 0.881 0.029 0.952 0.000 0.946 0.036 0.700 0.008

Bigram (50 entropy) 0.614 0.002 0.884 0.032 0.952 0.000 0.921 0.011 0.698 0.006

Bigram (75 entropy) 0.625 0.014 0.860 0.007 0.950 -0.002 0.895 -0.015 0.688 -0.004

Trigram 0.744 0.000 0.860 0.000 0.957 0.000 0.925 0.000 0.756 0.000

Trigram (5 entropy) 0.760 0.016 0.863 0.002 0.957 0.000 0.872 -0.053 0.754 -0.002

Trigram (15 entropy) 0.765 0.021 0.881 0.021 0.957 0.000 0.896 -0.029 0.737 -0.019

Trigram (25 entropy) 0.769 0.025 0.882 0.021 0.957 0.000 0.903 -0.022 0.734 -0.022

Trigram (50 entropy) 0.754 0.010 0.863 0.003 0.953 -0.004 0.870 -0.055 0.745 -0.012

Trigram (75 entropy) 0.741 -0.003 0.860 0.000 0.956 -0.002 0.865 -0.060 0.753 -0.003

Classification Task/ 
Feature Set

Teens vs. AdultsTeens vs. 20s Teens vs. 30s Teens vs. 40s Teens vs. 50s

 

Table 33.   Effect on F-score as Increasing Number of Entropy-Based Stop N-
grams are Removed. 

The experiments with the removal of entropy-based n-grams generated 

slight gains and losses in performance.  The highest gain was 0.036.  The largest 

losses were -0.078, -0.055, and -0.060.  Those losses occurred when feature 

sets removed stop n-grams with an entropy value of less than 1.000.  If the 

values from those experiments are excluded, then the greatest degradation in F-

score was 0.053 from the base case (no n-grams removed).  Without the feature 

sets where entropy values were less than 1.000, the overall average gain is 

0.008 and the overall average loss is -0.012.  Those averages indicate that 

removal of entropy-based n-grams with entropy values of 1.000 may only have a 

slight impact on performance. 

The differences in gain/loss do not seem to be monotonic, as more n-

grams are removed.  In this research, entropy values were calculated across an 

age group, rather than normalized by document.  That could be the reason why a 

monotonic increase/decrease is not seen.  Future experiments with entropy 

values normalized for each document could better determine the effects of 
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removing an increasing number of entropy-based stop n-grams.  Those 

experiments could also explore the effects of different entropy thresholds, to 

determine to what point it is worthwhile to remove n-grams that have entropy 

values of less than 1.000. 

4. Mutual High-Frequency Stop Words 

When comparing the difference between the feature set with no n-grams 

removed and the feature set with mutual high-frequency stop words removed, the 

removal of the n-grams had more of an effect in performance, compared to the 

entropy-based experiments.  The highest gain was 0.128 and largest loss was     

-0.220.  The overall average gain was 0.038 and loss was -0.065.  Appendix C 

contains the lists of the 75 high-frequency-based stop words generated for the 

sixth random training set, one of the better performing data sets. 

Table 34 shows the difference in F-score from the feature sets that had n-

grams removed to the feature sets that had no n-grams removed.  In the table, 

the F-score is the average F-score calculated without the highest and lowest F-

score measure from the 10 random trials.  Similar to the behavior of the entropy-

based stop words, there does not seem to be a monotonic increase/decrease in 

performance as more n-grams are removed.  In this research, the frequency 

counts of the n-grams were calculated across an age group, which may have 

caused the non-monotonic increase/decrease in performance.  Future 

experiments with frequency values normalized for each document could better 

determine the effects of removing more and more stop n-grams.  Such an 

approach will be equivalent to using tf-idf for feature selection to reduce 

dimensionality. 



F-score Difference F-score Difference F-score Difference F-score Difference F-score Difference

Unigram 0.535 0.000 0.855 0.000 0.962 0.000 0.900 0.000 0.669 0.000

Unigram (5 stop) 0.502 -0.033 0.883 0.028 0.877 -0.085 0.847 -0.053 0.786 0.117

Unigram (15 stop) 0.515 -0.020 0.888 0.034 0.910 -0.052 0.805 -0.095 0.735 0.066

Unigram (25 stop) 0.615 0.080 0.886 0.031 0.910 -0.051 0.848 -0.052 0.698 0.029

Unigram (50 stop) 0.663 0.128 0.894 0.039 0.960 -0.002 0.894 -0.006 0.679 0.010

Unigram (75 stop) 0.551 0.016 0.878 0.024 0.975 0.014 0.945 0.045 0.720 0.051

Bigram 0.611 0.000 0.852 0.000 0.952 0.000 0.910 0.000 0.692 0.000

Bigram (5 stop) 0.694 0.083 0.891 0.039 0.902 -0.050 0.738 -0.171 0.757 0.065

Bigram (15 stop) 0.638 0.027 0.914 0.062 0.947 -0.005 0.913 0.003 0.766 0.074

Bigram (25 stop) 0.591 -0.020 0.893 0.041 0.959 0.006 0.871 -0.039 0.729 0.038

Bigram (50 stop) 0.656 0.045 0.913 0.060 0.976 0.024 0.913 0.003 0.728 0.037

Bigram (75 stop) 0.628 0.017 0.888 0.036 0.980 0.027 0.945 0.036 0.716 0.024

Trigram 0.744 0.000 0.860 0.000 0.957 0.000 0.925 0.000 0.756 0.000

Trigram (5 stop) 0.581 -0.163 0.888 0.028 0.956 -0.001 0.935 0.010 0.743 -0.013

Trigram (15 stop) 0.576 -0.168 0.888 0.028 0.974 0.017 0.951 0.026 0.721 -0.035

Trigram (25 stop) 0.524 -0.220 0.885 0.024 0.977 0.020 0.953 0.028 0.708 -0.049

Trigram (50 stop) 0.537 -0.207 0.850 -0.011 0.974 0.017 0.958 0.033 0.732 -0.024

Trigram (75 stop) 0.609 -0.135 0.852 -0.008 0.991 0.034 0.951 0.026 0.705 -0.051

Classification Task/ 
Feature Set

Teens vs. 50s Teens vs. AdultsTeens vs. 20s Teens vs. 30s Teens vs. 40s

 

Table 34.   Effect on F-score as Increasing Number of High-Frequency-Based 
Stop N-grams are Removed. 

There was a significant decrease in performance when stop words were 

removed from the trigram feature.  A possible reason is that the n-grams 

removed were very distinct for one age group, where one age group used some 

n-grams more frequently than the other age group.  As an example, in the first 

random training data set, the trigram <beginning of post tag> .action is was 

removed in all feature sets that use stop word removal.  Teens wrote that trigram 

326 times.  The 20s usage was 708; 30s was 202; 40s was 65; and 50s was 5.  

Teens only used that n-gram 5% of the time compared to adults.  By removing 

that n-gram, that distinguishing n-gram was lost. 

Table 35 shows the average percentage of use by teens and adults of the 

removed words for each age group classification task. 
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Mutual Words Removed Teens 20s Teens 20s Teens 20s

5 0.280 0.734 0.287 0.713 0.168 0.832
15 0.286 0.718 0.273 0.727 0.221 0.779
25 0.283 0.720 0.279 0.721 0.240 0.760
50 0.278 0.723 0.275 0.725 0.263 0.737
75 0.279 0.721 0.278 0.722 0.269 0.731

Mutual Words Removed Teens 30s Teens 30s Teens 30s

5 0.400 0.600 0.439 0.561 0.354 0.646
15 0.396 0.604 0.412 0.588 0.386 0.614
25 0.382 0.618 0.424 0.576 0.407 0.593
50 0.393 0.607 0.410 0.590 0.436 0.564
75 0.388 0.612 0.410 0.590 0.425 0.575

Mutual Words Removed Teens 40s Teens 40s Teens 40s

5 0.454 0.546 0.497 0.503 0.402 0.598
15 0.468 0.532 0.441 0.559 0.494 0.506
25 0.467 0.533 0.470 0.530 0.497 0.503
50 0.471 0.529 0.474 0.526 0.519 0.481
75 0.474 0.526 0.486 0.514 0.509 0.491

Mutual Words Removed Teens 50s Teens 50s Teens 50s

5 0.839 0.161 0.856 0.144 0.808 0.192
15 0.836 0.164 0.811 0.189 0.799 0.201
25 0.838 0.162 0.837 0.163 0.832 0.168
50 0.837 0.163 0.834 0.166 0.839 0.161
75 0.838 0.162 0.838 0.162 0.831 0.169

Mutual Words Removed Teens Adults Teens Adults Teens Adults

5 0.176 0.840 0.186 0.814 0.090 0.910
15 0.172 0.833 0.170 0.830 0.147 0.853
25 0.166 0.837 0.179 0.821 0.151 0.849
50 0.165 0.837 0.170 0.830 0.173 0.827
75 0.163 0.838 0.173 0.827 0.178 0.822

Unigram Average Bigram Average Trigram Average

 

Table 35.   Average Percentage of Use of the Mutual High-Frequency Stop N-
grams. 

In the teens versus 20s classification task, teens comprised of 40% of the 

authors (training and test sets), so there was an almost balanced data set.  The 

usage of mutual high-frequency stop n-grams, however, was not balanced.  In all 

the trigram experiments, teens used the stop n-grams less than 27% of the time.  
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Thus, the removal of n-grams that were used less often by teens could be the 

cause for the significant loss of performance.  Even the removal of only five 

mutual n-grams caused the F-score to go from 0.744 to 0.581. 

In both the teens versus 30s and teens versus 40s classification tasks, 

there was a more even usage of the stop n-grams, especially in the teens versus 

40s classification task.  There, in a majority of instances, the removal of the stop 

n-grams increased performance from the base feature where no stop n-grams 

were removed.  In fact, the best F-scores are from features sets that remove 

mutual high-frequency stop n-grams. 

Even though there was disproportionate usage of stop n-grams between 

teens and 50-year-olds, the performance of the SVM was still very good.  A 

reason for this could be the differences in vocabulary between the two age 

groups permeated throughout the entire vocabulary.  The NBC experiments 

support this reason.  In the teens versus 50s experiments with the NBC using 

Witten-Bell smoothing, though the prior probability of the teen class is 85%, there 

was still an average precision of over 90%.  The vocabulary of the 50-year-olds 

was different enough that it is able to overcome the high prior probability that an 

n-gram was written by a teen. 

The usage of the mutual stop n-grams was uneven between teens and 

adults as well.  There, however, was not a precipitous drop in performance as n-

grams were removed.  The removal of some mutual n-grams gave a slight edge 

in performance over not removing any n-grams at all.  A possible reason for this 

may be because teens have a different enough vocabulary that the removal of 

some n-grams does not remove all the discriminating n-grams.  As more and 

more n-grams were removed, however, there was a decrease in performance, 

especially in the trigram feature set.  In the top 10 results, the unigram and 

bigram feature sets allowed for the removal of only up to 15 mutual n-grams. 

It appears that the more even the usage of the stop n-grams, the better 

the performance by removing such n-grams; the more disparate the usage, the 
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less potential for a positive effect.  Where there is a disparate usage of common 

n-grams, it may be better to use the entropy-generated words than high-

frequency words.  If the n-gram usage is almost even, it appears to be beneficial 

to remove those common n-grams.  Future experiments are needed to explore 

the effects of removal of n-grams where there is an uneven usage, because in 

some cases, it is beneficial up to a certain point.  Those experiments can also 

help determine the number of n-grams to remove before there is a significant 

decrease in performance. 

5. Character N-grams 

Character n-grams did not perform as well as word n-grams in the SVM 

model and only gave a slight edge to word n-grams in the NBC model.  They did 

perform well in the NBC model in the teens versus 30s/40s/50s classification 

task.  In some cases, different sized grams did slightly better.  The character 

grams, however, did not do well when distinguishing between teens and adults.  

In this case, it could be that context with word phrases is more important.  The 

success of trigrams when distinguishing adults and 20-year-olds from teens 

demonstrates the need for context. 

In this research, only three character n-grams were used in the SVM 

experiments.  Future experiments with different sized character n-grams could 

explore the effectives of this feature type to distinguish chat. 

6. Meta-Data Features 

The addition of the meta-data features in all cases degraded performance.  

The reason for this might be due to the small file sizes of some of the documents.  

In our corpus, there were 1,717 documents that were 1 kilobyte (kb) or less in 

size.  Because of the small sizes, there may not be enough data to capture 

meaningful counts of the style-based features.  An experiment removing all files 

less than 1 kb in size, was performed.  The removal of such files, however, 

caused severe degradation to performance, due to the smaller training set. 



In the research by Kucukyilmaz et al., style-based features, however, were 

the best feature type.  Because they did not use a fine grain approach to 

counting the frequency of the style-based terms, they may have been able to get 

more meaningful feature values.  Future experiments with similar categories, 

defined by thresholds that Kucukyilmaz et al. used as meta-data feature values, 

could improve performance [11].  Such experiments could also include other 

types of meta-data, such as the frequency of stop n-grams or misspelled words. 

7. Lin Features 

Using the Lin features set, the SVM model performed marginally better 

than Lin's NBC, when classifying teens versus 20-year-olds.  The SVM model, 

however, did not generate better results, compared to Lin's NBC results for the 

other age groups.  Table 36 contains Lin's best NBC results and the SVM results 

from this research. 

 

Classification Task NBC F-score SVM F-score

Teens vs. 20s 0.464 0.468

Teens vs. 30s 0.786 0.785

Teens vs. 40s 0.814 0.827

Teens vs. 50s 0.932 0.922  

Table 36.   Comparison of SVM and NBC Models Using Lin's Feature Set [11]. 

Since Lin's features used a fine grain count of punctuation and 

emoticons—in essence a subset of meta-data features—using a less granular 

approach to represent the frequency of punctuation and emoticons could improve 

performance.  Future experiments with a similar approach to Kucukyilmaz et al., 

using threshold values rather than frequency counts [11], may improve 

performance using this feature set. 
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V. CONCLUSIONS 

A. SUMMARY 

Both models demonstrate that they have the capability of distinguishing 

age groups.  The SVM model, however, outperforms the NBC, because it is 

better able to handle the unbalanced data in the teens/adult data set.  It is 

possible that with a more balanced teen/adult data set, the NBC's performance 

could improve.  In almost all classifications tasks for both models, trigrams are 

the best feature type for both models. 

The removal of stop n-grams sometimes improved performance, but at 

times also degraded performance.  N-grams with entropy of 1.000 generated a 

more stable list of stop words than high-frequency-based n-grams.  In most 

cases, the removal of such n-grams did not significantly affect performance.  

Because of the lack of effect on performance, this method could be used in future 

experiments to help decrease dimensionality in the feature vectors without 

concern for performance loss.  Caution should be exercised, because in the few 

experiments where stop n-grams with entropy of less than 1.000 were removed, 

there was a noticeable decrease in performance. 

Similarly, it appeared that the removal of high-frequency-based n-grams 

was beneficial, when the distribution of the stop n-gram across classes was 

uniform.  If there is a disproportionate use, however, there is a risk of removing n-

grams that are distinct and contain more information.  An exploration of the 

effects of removing words at different thresholds is needed.  If more words can 

be removed, it could improve the NBC, because words that have more 

distinctiveness would be given more weight.  It may also improve the SVM model 

by reducing the amount of sparse data. 
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Inclusion of meta-data, or only using meta-data as a feature, produced 

poor results.  The addition of such features may have caused an increase in 

sparse data to the feature vectors to the point of degrading performance.  Instead 

of using a fine grain measurement of meta-data, categories defined by thresholds 

may generate better results. 

B. FUTURE WORK 

1. Exploration of Other Features/Kernels 

None of the work in this study used combinations of feature types.  The 

trigram feature type produced the best performance when classifying teens 

versus adults in the NBC model; but unigrams and bigrams produced the best 

results in the SVM model.  A combination of using both n-gram types may result 

in an increase in performance.  Also, future experiments can help determine the 

optimal threshold for stop n-gram removal of both entropy-based and high-

frequency stop n-grams.  Such experiments can also explore normalizing the 

entropy value and frequency counts to generate better stop n-gram lists.  Though 

not found in this research, past research has shown that emoticons and 

punctuation do play a role in classifying age groups [11].  By using categories 

defined by thresholds, instead of individual frequency counts as meta-data 

feature values, the inclusion of meta-data could help fine-tune the classifiers for 

better performance. 

Also, this research only used a linear kernel for the SVM.  Given that 

conversations among teens and people in their early 20s are very similar, a linear 

kernel may not be able to produce a cleanly separating hyperplane.  Other kernel 

types may be able to generate a better separation between the teens and 20s 

age groups, thus better able to classify them. 

2. Deception of Age 

The corpus used in our experiments relied on self-reported ages, which 

we assumed were true.  When creating an online profile, people can easily 
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misrepresent their age.  The models we generated have the potential to 

distinguish different age groups, but our experiments did not try to distinguish 

ages when a person pretended to be of a different age.  Our models have 

success with truthful ages, but experiments with misrepresentative ages are 

needed to determine if SVMs and NBCs have the ability to distinguish the actual 

age. 

3. Multi-class Classifier 

A multi-class classifier would be able to handle a more realistic scenario of 

a general chat room, where people of all ages converse.  This classifier could 

also help narrow observation of chat conversations to specific age groups.  We 

attempted to perform multi-class classification using a linear kernel, but the 

results are not at all noteworthy.  Because there is some similarity between age 

groups, they may occupy the same vector space areas, therefore not allowing for 

a clean linear division.  This similarity is demonstrated by the small size of the 

slack variables used (e.g., in the case of teens versus 40s, the slack variable is  

2-15).  SVM models using non-linear kernels may generate better performance. 

4. Cross Domain into Instant Messaging 

The YISS-2 survey found that 40% of the first incident of a sexual 

solicitation occurred when using Instant Messaging [2].  While similar to online 

chat, Instant Messaging is more akin to a private chat room channel for usually 

two, but sometimes more users.  A method to detect adults conversing with teens 

is needed to prevent solicitations via Instant Messaging.  Future experiments can 

explore the ability or fine-tune the models generated in this research to cross 

domain into Instant Messaging. 

5. Detection of Distribution of Child Pornography 

The YISS-2 survey also detected a new trend of solicitations, where 27% 

of solicitors asked youths for sexual photographs of themselves [2].  The National 
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Juvenile Online Victimization Study found that 40% of criminals arrested for 

possession of child pornography also sexually victimized children [25].  A reason 

why child pornography possessors may collect it is so they can use it to "groom 

children and lower their inhibitions [26]."  When trying to detect suspicious 

behavior, the solicitation for sexual photographs increases the probability of a 

follow-on aggressive solicitation.  Future research in detection of online predators 

should not only include detection of adults conversing with teens, but also include 

the detection of exchanges of sexual photos. 

C. CONCLUDING REMARKS 

The results of this research produced results that show that it is possible 

to differentiate between adult conversations and teen conversations, using 

models generated by a Support Vector Machine.  More experiments, using 

combined or different feature types; other machine learning techniques; and 

crossing different online media domains, are needed to further improve 

performance to the point where an automatic detection system can be fielded.  

Given the lack of reporting to parents and law enforcement, there is a great need 

for an automated system to help prevent online solicitations of youths from 

becoming offline victims. 
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APPENDIX A: SUPPORT VECTOR MACHINE 

The Support Vector Machine is discussed in [10, 18–21].  Also known as a 

maximum margin classifier, the SVM tries to find the line between two classes of 

data that maximizes the margin between them.  Because data being classified is 

not always linearly separable (i.e., there is not always a line, or hyperplane, 

which can separate the two classes of data), it is often transformed using a 

kernel function.  Though there are different types of kernels for an SVM, this 

research used a linear kernel, which does not transform the data.  The two 

classes of data are represented by n-dimensional vectors, where each dimension 

represents a feature, such as an n-gram.  Using the training set vectors, the SVM 

generates the hyperplane (model vector) that separates the two classes with the 

maximum margin.  The test set vectors and model vector are then used to 

determine which side of the hyperplane the test vectors lay.  The side that a test 

vector lies upon is its predicted class. 

Based on the training data, a SVM will find the maximum margin 

hyperplane that separates the two classes.  A maximum margin hyperplane 

exists where the distance from the closest data point to the hyperplane is as 

large as possible.  Support vectors are the data points that are on the margin.  

Figure 6 is an example of a hyperplane that creates the maximum margin 

between classes.  Also, in Figure 6, the support vectors are circled.  The 

maximum margin in the figure is the distance between lines l1 and l2. 



 

Figure 6.   Linear Separating Hyperplanes. 

A. DETERMINING THE SIZE OF THE MARGIN 

The first step in defining the maximum margin hyperplane, is to find the 

size of the margin.  The equation for a hyperplane is 0Tw x b 
 

0T
kw x b 

.  If the 

hyperplane is to separate data, then its equation will be 
 

for all kx


of 

one class and for all 0T
jw x b 

 
jx


 of the other class [21].  Let the training points 

be labeled as , with 1 being a positive example and  being a 

negative example, thus the hyperplane can be defined as  

{ 1,1}ky   1

( )T
k ky w x b 
 

0 for all points. 

Because 
b

w
  determines the hyperplane's offset from the origin along the 

vector w , w  and b  can be scaled without changing the hyperplane.  To prevent 

such scaling,  and b  are chosen such that 

 


w

( ) 1  T
k ky w x b k  
 

. 

To help find the separating hyperplane, think of two hyperplanes, 

represented by l1 and l2 in Figure 6, which are parallel to the separating 

hyperplane.  The points of one class closest to points of the other class that lie 

on these planes are also known as support vectors.  Because of our choice of 
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values for   and b , the equations for these planes are and 

 for some points 

w

) 

( )T
k ky w x b 

( T
j jy w x b ,  j k  where j  is a data point for the positive 

class ( ) and  is a data point for the negative class (1jy  k 1ky   ).  There could 

be more than one point lying on these planes.  The separating hyperplane's 

distance to the margin is then half the distance between l1 and l2.   

This distance between l1 and l2 is also the same as the difference in 

distance from the origin to the closet point to l1 and the distance from the origin to 

the closet point to l2.  The distance from the origin to the closest point on a 

hyperplane is found by minimizing Tx x
 

subject to x
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Subtracting these two distances gives the margin size, 

1 1 2b b
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B. DEFINING THE MAXIMUM MARGIN HYPERPLANE 

To maximize the size of the margin, 
2

w
 , which would give the greatest 

distance between the classes, the denominator, w


, must be minimized, subject 

to the constraint that  ( ) 1  T
k ky w x b k  
 

.

To do so, we use the Karush Kuhn Tucker (KKT) setup using positive 

Lagrange multipliers and subtract the constraints.  Because both the main term 

and the constraints are linear convex, this becomes a convex quadratic 

optimization problem [10] where   
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Using the KKT conditions, we can then solve the dual problem, which is to 

maximize with respect to pL k , subject to the constraints that the gradient of 

with respect to and b are 0 and that pL w
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Substituting the above into , we get the dual pL
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which is maximized with respect to k , subject to the constraints , and 0k k
k

y 

0,k k   .  Quadratic optimization methods are used to solve the above 

equation [10].  Once one solves for k , the 0k   are the support vectors and lie 

on the separating hyperplanes.  All other training points have 0k   and lie either 

on the separating hyperplanes, or in the classification region.  The support 

vectors satisfy the equation (k kx ) 1Ty w b 
 

b

.  Thus b is solved for by finding one 

of the active constraints ( )T
k ky w x 1 
 

 where k is not zero [21].  To maintain 

numerical stability, b is calculated for every support vector and the average value 

is used [10].  Once  and b  are known, the separating hyperplane is found. w


It is unlikely that the hyperplane will cleanly separate the data in real world 

problems.  Classes are likely to overlap or have a very small margin.  "Slack 

variables" compensate for this effect [21].  Rather than having 

( ) 1  T
k ky w x b k  
 

, slack variables, , are introduce such that ks

( ) 1  T
k k ky w x b s k   
 

. 

Without violating the constraint above, the slack variable allows a point to 

be  distance on the wrong side of the hyperplane.  To prevent large slack 

variables from allowing any line to partition the data, another term is added to the 

Lagrangian to penalize large slacks [21], 

ks

1
( ( ) 1)

2
T T

p k k k kL w w y w x b s          
ks . 
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The equation is then minimized as above. 
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APPENDIX B: ENTROPY-BASED STOP WORD LISTS  

This appendix contains the 75 n-grams in the entropy-based stop n-gram 

lists for the seventh random training set.  This set contained n-grams that had 

entropy values of less than 1.000, which may have caused degradation to the 

SVM's classification performance.  Tables 37–51 contain the entropy value as 

well as the adult and teen usage per n-gram.  The n-grams are ordered by their 

entropy, in ascending order. 



Unigram Entropy 20s Teen Unigram Entropy 20s Teen
hoho. 1.000 2 2 brat 1.000 3 3
rarely 1.000 2 2 cereal 1.000 4 4
;-) 1.000 88 88 bangs 1.000 2 2
nooooo 1.000 3 3 nods. 1.000 4 4
ewwwwwww 1.000 2 2 theory 1.000 5 5
funny.. 1.000 2 2 friends, 1.000 2 2
rate 1.000 2 2 *throws 1.000 2 2
papi. 1.000 6 6 funniest 1.000 2 2
sting 1.000 2 2 redorchid 1.000 5 5
ghost 1.000 4 4 stoned 1.000 3 3
2endsoftime 1.000 5 5 sneezes. 1.000 2 2
tail? 1.000 2 2 wide 1.000 3 3
object 1.000 2 2 fields 1.000 2 2
character 1.000 4 4 not? 1.000 5 5
foreign 1.000 2 2 sn 1.000 2 2
skate 1.000 3 3 kansas 1.000 2 2
fried 1.000 4 4 gay! 1.000 3 3
knife 1.000 3 3 it" 1.000 2 2
dude.. 1.000 2 2 phat? 1.000 3 3
immature 1.000 4 4 wait," 1.000 5 5
booze 1.000 3 3 loads 1.000 2 2
to.. 1.000 2 2 else? 1.000 2 2
experience 1.000 2 2 jus 1.000 14 14
nuts. 1.000 2 2 porkpiehat 1.000 2 2
takin 1.000 3 3 teen 1.000 2 2
wall. 1.000 3 3 dumb. 1.000 2 2
t.v. 1.000 2 2 addict 1.000 2 2
ya! 1.000 3 3 career 1.000 2 2
cheek 1.000 3 3 phat," 1.000 2 2
shopping 1.000 4 4 creative 1.000 2 2
messing 1.000 3 3 gummy 1.000 2 2
md 1.000 4 4 skool 1.000 2 2
whores 1.000 3 3 males 1.000 5 5
shudders. 1.000 2 2 what?! 1.000 2 2
mom, 1.000 3 3 think. 1.000 6 6
trail 1.000 3 3 sucked 1.000 6 6
pa? 1.000 3 3 ther 1.000 4 4
pisses 1.000 3 3

Teens Versus 20s Teens Versus 20s

 

Table 37.   Entropy-Based Stop Unigrams for Teens vs. 20s Classification 
Task. 
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Unigram Entropy 30s Teen Unigram Entropy 30s Teen
pants. 1.000 4 4 trail 1.000 3 3
load 1.000 2 2 msn? 1.000 2 2
mi 1.000 3 3 um 1.000 2 2
nuttin 1.000 3 3 affection 1.000 2 2
song 1.000 2 2 hya 1.000 2 2
been? 1.000 6 6 rained 1.000 2 2
ewwwwwww 1.000 2 2 hides. 1.000 5 5
rate 1.000 2 2 runs. 1.000 2 2
guest 1.000 2 2 pushes 1.000 2 2
cheerleader 1.000 2 2 sicko 1.000 2 2
rose 1.000 4 4 funniest 1.000 2 2
party. 1.000 2 2 eggs 1.000 2 2
sting 1.000 2 2 clown 1.000 3 3
attractive 1.000 2 2 sneezes. 1.000 2 2
personal 1.000 5 5 spanks 1.000 2 2
fat. 1.000 2 2 awful 1.000 3 3
parties 1.000 3 3 canada? 1.000 3 3
tail? 1.000 2 2 once 1.000 2 2
thing. 1.000 3 3 gah 1.000 2 2
will 1.000 2 2 it" 1.000 2 2
sleep 1.000 2 2 fuker 1.000 2 2
they? 1.000 3 3 why's 1.000 2 2
disease 1.000 2 2 seen 1.000 52 52
room.. 1.000 2 2 blankie 1.000 2 2
matching 1.000 3 3 ooo 1.000 2 2
chilly 1.000 4 4 rode 1.000 3 3
cotton 1.000 2 2 scar 1.000 4 4
conversations 1.000 2 2 attitude 1.000 2 2
nuts. 1.000 2 2 george 1.000 4 4
takin 1.000 3 3 hitting 1.000 4 4
harsh 1.000 4 4 snl 1.000 2 2
ireland 1.000 3 3 baby! 1.000 2 2
bare 1.000 2 2 said. 1.000 4 4
school 1.000 2 2 career 1.000 2 2
shopping 1.000 4 4 creative 1.000 2 2
ridiculous 1.000 2 2 pfffft 1.000 2 2
hot 1.000 2 2 specific 1.000 2 2
mom 1.000 3 3

Teens Versus 30s Teens Versus 30s

 

Table 38.   Entropy-Based Stop Unigrams for Teens vs. 30s Classification 
Task. 
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Unigram Entropy 40s Teen Unigram Entropy 40s Teen
load 1.000 2 2 sooo 1.000 13 13
fair 1.000 4 4 ull 1.000 2 2
breath 1.000 4 4 specific 1.000 2 2
omg.. 1.000 2 2 worried 1.000 2 2
sting 1.000 2 2 today... 1.000 2 2
yes! 1.000 4 4 choice 1.000 4 4
whenever 1.000 2 2 panties 1.000 2 2
pie. 1.000 2 2 baby 1.000 35 35
too.. 1.000 4 4 un 1.000 3 3
dodge 1.000 2 2 king 1.000 10 10
plain 1.000 2 2 animals 1.000 4 4
no? 1.000 4 4 coach 1.000 2 2
mothman 1.000 2 2 <~~ 1.000 2 2
blast 1.000 2 2 wipes 1.000 3 3
him??? 1.000 2 2 rush 1.000 3 3
alrighty 1.000 2 2 dangerous 1.000 2 2
hush 1.000 8 8 krista 1.000 2 2
mom 1.000 3 3 tan 1.000 3 3
harder 1.000 2 2 cell 1.000 2 2
bangs 1.000 2 2 boom 1.000 2 2
buys 1.000 2 2 sentence 1.000 2 2
personally 1.000 2 2 dancin 1.000 2 2
money 1.000 2 2 minutes 1.000 8 8
hmmmmmmmm 1.000 3 3 box 1.000 8 8
tank 1.000 2 2 ks 1.000 2 2
spanks 1.000 2 2 u? 1.000 17 17
jersey 1.000 4 4 bet 1.000 18 18
penny 1.000 3 3 that? 1.000 20 20
steal 1.000 2 2 hawaii 1.000 3 3
sits 1.000 31 31 chicks 1.000 6 6
wind? 1.000 2 2 note 1.000 3 3
rub 1.000 2 2 western 1.000 2 2
joke 1.000 13 13 asking 1.000 19 19
anti 1.000 2 2 officially 1.000 3 3
leather 1.000 2 2 automatically 1.000 2 2
around. 1.000 3 3 yesss 1.000 2 2
gorilla 1.000 2 2 nh 1.000 5 5
teen 1.000 2 2

Teens Versus 40s Teens Versus 40s

 

Table 39.   Entropy-Based Stop Unigrams for Teens vs. 40s Classification 
Task. 
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Unigram Entropy 50s Teen Unigram Entropy 50s Teen
ok.. 1.000 3 3 hahahahah 1.000 2 2
sting 1.000 2 2 spent 1.000 2 2
holding 1.000 2 2 raining 1.000 2 2
monday 1.000 2 2 titty 1.000 2 2
bottom 1.000 2 2 gawd 1.000 2 2
plain 1.000 2 2 << 1.000 3 3
veronica 1.000 3 3 lived 1.000 6 6
scarlet 1.000 3 3 farm 1.000 2 2
cook 1.000 4 4 skank 1.000 2 2
now... 1.000 3 3 ???? 1.000 2 2
vegas 1.000 3 3 room! 1.000 3 3
bob 1.000 8 8 dione 1.000 3 3
marie 1.000 2 2 due 1.000 2 2
harder 1.000 2 2 changes 1.000 2 2
ain't 1.000 2 2 calif 1.000 4 4
rained 1.000 2 2 too? 1.000 2 2
money 1.000 2 2 lives 1.000 5 5
woman 1.000 10 10 les 1.000 2 2
stands 1.000 2 2 moving 1.000 3 3
chains 1.000 2 2 whispers 1.000 2 2
kansas 1.000 2 2 mouse 1.000 2 2
absolutely 1.000 2 2 lap 1.000 4 4
flying 1.000 2 2 pair 1.000 2 2
hanging 1.000 2 2 checked 1.000 2 2
bumps 1.000 2 2 0.999411065 0.999 17 18
go 1.000 2 2 hi 0.999 333 358
barely 1.000 2 2 slow 0.998 11 10
glove 1.000 2 2 peace 0.998 9 10
tosses 1.000 3 3 yo 0.995 21 25
panties 1.000 2 2 cough 0.994 6 5
hobo 1.000 3 3 lizzie 0.994 5 6
giggles. 1.000 2 2 snow 0.994 5 6
sam 1.000 3 3 muh 0.994 5 6
uses 1.000 2 2 rose 0.991 5 4
know.. 1.000 2 2 near 0.991 8 10
atm 1.000 5 5 american 0.991 4 5
waves 1.000 2 2 far 0.991 8 10
round 1.000 4 4

Teens Versus 50s Teens Versus 50s

 

Table 40.   Entropy-Based Stop Unigrams for Teens vs. 50s Classification 
Task. 
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Unigram Entropy Adult Teen Unigram Entropy Adult Teen
hoho. 1.000 2 2 switches 1.000 2 2
funny.. 1.000 2 2 rally 1.000 2 2
drunk? 1.000 3 3 hai 1.000 2 2
shhh 1.000 3 3 curled 1.000 2 2
mark 1.000 4 4 itself 1.000 2 2
late. 1.000 4 4 vans 1.000 3 3
object 1.000 2 2 cap 1.000 2 2
scott 1.000 3 3 highschool 1.000 2 2
scoot 1.000 2 2 ud 1.000 2 2
ours 1.000 2 2 czech 1.000 3 3
people! 1.000 3 3 sales 1.000 2 2
you* 1.000 2 2 !shot 1.000 2 2
combination 1.000 2 2 gays 1.000 2 2
models 1.000 3 3 chews 1.000 2 2
ridiculous 1.000 2 2 thigh. 1.000 2 2
jerks 1.000 2 2 jade 1.000 2 2
3 1.000 2 2 gore 1.000 2 2
21? 1.000 2 2 conversation 1.000 2 2
drawing 1.000 2 2 grins. 1.000 2 2
fields 1.000 2 2 dro 1.000 2 2
sn 1.000 2 2 daniels 1.000 3 3
gah 1.000 2 2 fukin 1.000 2 2
thousands 1.000 2 2 gt 1.000 4 4
scar 1.000 4 4 crawl 1.000 2 2
grades 1.000 2 2 branch 1.000 2 2
pvt 1.000 2 2 attention. 1.000 2 2
teens 1.000 4 4 nighters 1.000 3 3
career 1.000 2 2 laffs 1.000 2 2
lol!!! 1.000 2 2 niks 1.000 2 2
phat 1.000 2 2 rifle 1.000 2 2
oooh. 1.000 2 2 argue 1.000 8 8
wires 1.000 2 2 keeley 1.000 2 2
helmet 1.000 3 3 now!!! 1.000 2 2
heels 1.000 2 2 face.. 1.000 2 2
heritage 1.000 2 2 pool. 1.000 2 2
mt 1.000 2 2 daniel 1.000 4 4
bunny. 1.000 2 2 na 1.000 3 3
maineman1701 1.000 2 2

Teens Versus AdultsTeens Versus Adults

 

Table 41.   Entropy-Based Stop Unigrams for Teens vs. Adults Classification 
Task. 
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Bigram Entropy 20s Teen Bigram Entropy 20s Teen
you believe 1.000 2 2 i may 1.000 4 4
<post> oooh. 1.000 2 2 sumthin </post> 1.000 2 2
your asl? 1.000 2 2 bday is 1.000 2 2
give u 1.000 3 3 sure? </post> 1.000 2 2
come and 1.000 3 3 size of 1.000 2 2
most women 1.000 3 3 op. </post> 1.000 2 2
because my 1.000 3 3 brown </post> 1.000 2 2
dont you 1.000 6 6 .action plays 1.000 6 6
moans. </post> 1.000 3 3 nuts. </post> 1.000 2 2
puts his 1.000 2 2 hate when 1.000 6 6
<post> pfft! 1.000 2 2 <post> pm 1.000 37 37
pa? </post> 1.000 3 3 is older 1.000 2 2
dogs </post> 1.000 2 2 to roll 1.000 2 2
hair is 1.000 3 3 beast </post> 1.000 2 2
all girls 1.000 2 2 a waste 1.000 4 4
subject </post> 1.000 2 2 the inside 1.000 3 3
whoa </post> 1.000 7 7 who me? 1.000 3 3
sure is 1.000 2 2 i spent 1.000 2 2
miss my 1.000 2 2 runs around 1.000 3 3
or they 1.000 2 2 pay for 1.000 2 2
back.. </post> 1.000 2 2 asl? </post> 1.000 9 9
tail? </post> 1.000 2 2 appreciate it 1.000 2 2
glad i 1.000 4 4 for life 1.000 2 2
could </post> 1.000 3 3 smoke. </post> 1.000 3 3
<post> 10 1.000 2 2 girlfriend </post> 1.000 5 5
not there 1.000 2 2 out if 1.000 2 2
army </post> 1.000 2 2 the pool 1.000 2 2
white people 1.000 4 4 thought i'd 1.000 2 2
any1 from 1.000 2 2 sauce </post> 1.000 2 2
peaches for 1.000 2 2 would just 1.000 4 4
up her 1.000 2 2 keep my 1.000 2 2
cat. </post> 1.000 3 3 paying attention. 1.000 2 2
cant remember 1.000 2 2 my b-day 1.000 2 2
<post> talk 1.000 8 8 gonna pm 1.000 3 3
stupid. </post> 1.000 3 3 the face. 1.000 3 3
wall. </post> 1.000 3 3 chocolate </post> 1.000 2 2
monster </post> 1.000 2 2 cause if 1.000 2 2
make us 1.000 2 2

Teens Versus 20sTeens Versus 20s

 

Table 42.   Entropy-Based Stop Bigrams for Teens vs. 20s Classification Task. 
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Bigram Entropy 30s Teen Bigram Entropy 30s Teen
people like 1.000 2 2 oops sorry 1.000 2 2
dirty </post> 1.000 3 3 brown </post> 1.000 2 2
me. i 1.000 2 2 ridiculous </post> 1.000 2 2
girl! </post> 1.000 3 3 then get 1.000 2 2
one who 1.000 2 2 and youre 1.000 3 3
u ever 1.000 2 2 on all 1.000 2 2
kid is 1.000 2 2 that there 1.000 2 2
ran out 1.000 2 2 <post> keep 1.000 3 3
puts his 1.000 2 2 will i 1.000 2 2
dogs </post> 1.000 2 2 like any 1.000 2 2
can call 1.000 5 5 guy was 1.000 3 3
i dunno, 1.000 3 3 the inside 1.000 3 3
sure is 1.000 2 2 to kill 1.000 4 4
miss my 1.000 2 2 cant take 1.000 2 2
tail? </post> 1.000 2 2 didnt know 1.000 11 11
on what 1.000 4 4 the face 1.000 4 4
glad i 1.000 4 4 dances around 1.000 2 2
of going 1.000 2 2 do it? 1.000 2 2
the eyes 1.000 2 2 boys </post> 1.000 3 3
mrqd </post> 1.000 2 2 out if 1.000 2 2
mean he 1.000 2 2 dammit i 1.000 2 2
tall </post> 1.000 2 2 thought i'd 1.000 2 2
lol me 1.000 2 2 .action steals 1.000 2 2
guy </post> 1.000 19 19 myself </post> 1.000 11 11
could i 1.000 2 2 scott </post> 1.000 14 14
dont mind 1.000 5 5 and i've 1.000 3 3
hit my 1.000 2 2 keep my 1.000 2 2
for some 1.000 11 11 air. </post> 1.000 2 2
heck is 1.000 2 2 like i'm 1.000 2 2
i do. 1.000 2 2 i are 1.000 3 3
<post> 24 1.000 2 2 take you 1.000 3 3
.action beats 1.000 4 4 <post> gets 1.000 2 2
any nice 1.000 3 3 her a 1.000 4 4
clue </post> 1.000 2 2 <post> bless 1.000 2 2
back is 1.000 2 2 it good 1.000 2 2
your life 1.000 2 2 the bunny 1.000 3 3
any way 1.000 2 2 he cant 1.000 2 2
my hands 1.000 2 2

Teens Versus 30sTeens Versus 30s

 

Table 43.   Entropy-Based Stop Bigrams for Teens vs. 30s Classification Task. 

82 
 



Bigram Entropy 40s Teen Bigram Entropy 40s Teen
in about 1.000 2 2 car </post> 1.000 3 3
<post> er 1.000 2 2 i ain't 1.000 2 2
why would 1.000 4 4 <post> shit 1.000 3 3
mine is 1.000 3 3 was getting 1.000 2 2
one who 1.000 2 2 he went 1.000 2 2
girl lol 1.000 2 2 do it? 1.000 2 2
<post> nope, 1.000 2 2 thought i'd 1.000 2 2
<post> bbl 1.000 9 9 eh? </post> 1.000 7 7
i can 1.000 65 65 albany </post> 1.000 2 2
dogs </post> 1.000 2 2 myself </post> 1.000 11 11
is love 1.000 2 2 the place 1.000 2 2
she wants 1.000 3 3 thinking about 1.000 4 4
miss my 1.000 2 2 in it 1.000 12 12
glad i 1.000 4 4 wb gaston 1.000 2 2
<post> 10 1.000 2 2 came to 1.000 4 4
where do 1.000 3 3 an ass 1.000 2 2
mrqd </post> 1.000 2 2 say anything 1.000 2 2
not there 1.000 2 2 u get 1.000 7 7
state </post> 1.000 3 3 end of 1.000 4 4
awake </post> 1.000 2 2 he cant 1.000 2 2
it, i 1.000 2 2 a baby 1.000 2 2
ago </post> 1.000 11 11 afk for 1.000 2 2
hit my 1.000 2 2 with it 1.000 6 6
may not 1.000 3 3 me when 1.000 4 4
<post> didn't 1.000 4 4 from new 1.000 2 2
size of 1.000 2 2 let her 1.000 3 3
mate </post> 1.000 3 3 emma </post> 1.000 4 4
why they 1.000 2 2 my pm 1.000 7 7
of all 1.000 2 2 <post> nice, 1.000 3 3
convo </post> 1.000 3 3 called you 1.000 2 2
.action cries. 1.000 3 3 up like 1.000 2 2
oops sorry 1.000 2 2 time? </post> 1.000 2 2
worry about 1.000 2 2 said she 1.000 2 2
florida </post> 1.000 7 7 and good 1.000 3 3
tried to 1.000 3 3 she said 1.000 5 5
right there 1.000 2 2 idea </post> 1.000 3 3
him??? </post> 1.000 2 2 went out 1.000 2 2
.action cries 1.000 2 2

Teens Versus 40sTeens Versus 40s

 

Table 44.   Entropy-Based Stop Bigrams for Teens vs. 40s Classification Task. 
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Bigram Entropy 50s Teen Bigram Entropy 50s Teen
people who 1.000 2 2 would like 1.000 2 2
you be 1.000 2 2 near the 1.000 2 2
<post> hahahahah 1.000 2 2 snow </post> 1.000 3 3
than a 1.000 2 2 the fun 1.000 2 2
think the 1.000 2 2 canada </post> 1.000 2 2
is love 1.000 2 2 my head 1.000 3 3
same here 1.000 2 2 ???? </post> 1.000 2 2
the person 1.000 2 2 as the 1.000 2 2
strat </post> 1.000 4 4 :-) :-) 1.000 10 10
monster </post> 1.000 2 2 watch your 1.000 2 2
week </post> 1.000 2 2 <post> papi 1.000 2 2
<post> hahahah 1.000 3 3 dione </post> 1.000 3 3
is more 1.000 2 2 yikes </post> 1.000 2 2
contented </post> 1.000 4 4 <post> loves 1.000 2 2
<post> getting 1.000 2 2 in 3 1.000 2 2
right there 1.000 2 2 cards </post> 1.000 2 2
own </post> 1.000 3 3 am back 1.000 3 3
couple of 1.000 2 2 matt </post> 1.000 2 2
where it 1.000 3 3 now you 1.000 2 2
yes or 1.000 2 2 so true 1.000 2 2
<post> sometimes 1.000 2 2 use to 1.000 3 3
in portland 1.000 2 2 thought u 1.000 2 2
got ya 1.000 2 2 lil </post> 1.000 4 4
.action giggles. 1.000 2 2 tell them 1.000 2 2
hello to 1.000 2 2 hope not 1.000 2 2
in and 1.000 2 2 remember when 1.000 2 2
back in 1.000 5 5 has no 1.000 2 2
said she 1.000 2 2 one day 1.000 2 2
the bottom 1.000 2 2 when is 1.000 3 3
tired of 1.000 2 2 and talk 1.000 2 2
giggles. </post> 1.000 2 2 you shouldn't 1.000 2 2
<post> ok.. 1.000 3 3 when he 1.000 3 3
was there 1.000 2 2 since when 1.000 3 3
life is 1.000 2 2 a white 1.000 2 2
sounds like 1.000 6 6 <post> < 1.000 2 2
<post> lo 1.000 2 2 me either 1.000 3 3
sam </post> 1.000 2 2 who can 1.000 2 2
they got 1.000 2 2

Teens Versus 50sTeens Versus 50s

 

Table 45.   Entropy-Based Stop Bigrams for Teens vs. 50s Classification Task. 
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Bigram Entropy Adult Teen Bigram Entropy Adult Teen
dont ya 1.000 2 2 shuts up. 1.000 2 2
nooo </post> 1.000 8 8 to lie 1.000 2 2
cyber? </post> 1.000 3 3 balls. </post> 1.000 4 4
most women 1.000 3 3 one up 1.000 2 2
moans. </post> 1.000 3 3 yellow </post> 1.000 2 2
sorry! </post> 1.000 3 3 and ill 1.000 2 2
all girls 1.000 2 2 and even 1.000 2 2
whoa </post> 1.000 7 7 to only 1.000 2 2
<post> nah. 1.000 3 3 blanket </post> 1.000 2 2
kick me 1.000 2 2 beleive in 1.000 2 2
ur name 1.000 5 5 kid named 1.000 2 2
any1 from 1.000 2 2 shot in 1.000 2 2
peaches for 1.000 2 2 else who 1.000 2 2
sumthin </post> 1.000 2 2 be sure 1.000 3 3
op. </post> 1.000 2 2 hello hello 1.000 3 3
ridiculous </post> 1.000 2 2 coming from 1.000 2 2
out! </post> 1.000 4 4 ignored </post> 1.000 2 2
i seem 1.000 3 3 where have 1.000 4 4
him??? </post> 1.000 2 2 but really 1.000 2 2
beast </post> 1.000 2 2 <post> soooo 1.000 3 3
cries.. </post> 1.000 2 2 <post> what'd 1.000 2 2
runs around 1.000 3 3 how's everyone 1.000 2 2
sauce </post> 1.000 2 2 of music 1.000 3 3
hiya starr 1.000 2 2 michael? </post> 1.000 3 3
wb gaston 1.000 2 2 crap outta 1.000 2 2
the face. 1.000 3 3 to mike 1.000 2 2
it worth 1.000 2 2 <post> ooo, 1.000 2 2
get gagged 1.000 2 2 fresh </post> 1.000 2 2
is sick 1.000 3 3 german </post> 1.000 3 3
like not 1.000 2 2 they both 1.000 2 2
dumb as 1.000 2 2 like he 1.000 3 3
<post> wait, 1.000 3 3 bit with 1.000 3 3
u hear 1.000 2 2 parents were 1.000 2 2
so bored. 1.000 2 2 would if 1.000 2 2
its okay 1.000 2 2 song about 1.000 2 2
<post> what?? 1.000 3 3 fans in 1.000 2 2
.action moans. 1.000 3 3 who hates 1.000 2 2
me tonight 1.000 2 2

Teens Versus AdultsTeens Versus Adults

 

Table 46.   Entropy-Based Stop Bigrams for Teens vs. Adults Classification 
Task. 
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Trigram Entropy 20s Teen Trigram Entropy 20s Teen
u want me 1.000 3 3 and the other 1.000 3 3
<post> umm </post> 1.000 3 3 i was younger 1.000 2 2
i feel a 1.000 2 2 i cant do 1.000 3 3
talked to you 1.000 2 2 the house </post> 1.000 3 3
<post> but hey 1.000 3 3 that was the 1.000 2 2
<post> yeah lol 1.000 2 2 a bunch of 1.000 6 6
just got a 1.000 2 2 to take my 1.000 2 2
<post> mhmm </post> 1.000 3 3 didn't want to 1.000 2 2
talk to </post> 1.000 4 4 <post> ass </post> 1.000 2 2
<post> u wish 1.000 2 2 the size of 1.000 2 2
in here lol 1.000 2 2 <post> .action got 1.000 2 2
<post> u said 1.000 2 2 hey mike </post> 1.000 2 2
just like the 1.000 2 2 girls wana chat 1.000 3 3
<post> is he 1.000 3 3 then go to 1.000 2 2
<post> my name 1.000 5 5 so i have 1.000 2 2
he called me 1.000 2 2 <post> heyy </post> 1.000 2 2
<post> .action sneezes. 1.000 2 2 for a little 1.000 3 3
<post> .action cant 1.000 2 2 <post> hmmm... </post> 1.000 2 2
give it up 1.000 4 4 <post> .action wants 1.000 11 11
<post> too </post> 1.000 2 2 was just about 1.000 2 2
<post> my profile 1.000 2 2 guys and girls 1.000 2 2
sup peeps </post> 1.000 2 2 he has to 1.000 2 2
<post> hey!! </post> 1.000 2 2 i pm you 1.000 3 3
in here i 1.000 2 2 any girl from 1.000 2 2
<post> lol heaven 1.000 3 3 <post> im great 1.000 2 2
doing it </post> 1.000 2 2 still here </post> 1.000 3 3
<post> .action doesn't 1.000 4 4 thought i was 1.000 5 5
<post> because my 1.000 2 2 he had a 1.000 3 3
<post> need a 1.000 2 2 where u from 1.000 3 3
in it for 1.000 2 2 a shower </post> 1.000 2 2
<post> i speak 1.000 2 2 <post> .action moans. 1.000 3 3
i swear to 1.000 4 4 <post> m </post> 1.000 2 2
pretty cool </post> 1.000 2 2 <post> hey brb 1.000 2 2
would you like 1.000 2 2 paying attention. </post> 1.000 2 2
4 years </post> 1.000 2 2 <post> hell yeah 1.000 5 5
<post> .action sneezes 1.000 2 2 <post> hey does 1.000 2 2
is why i 1.000 3 3 gave me a 1.000 2 2
remember me </post> 1.000 2 2
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Trigram Entropy 30s Teen Trigram Entropy 30s Teen
is just a 1.000 3 3 afk for a 1.000 2 2
u lol </post> 1.000 2 2 have a good 1.000 12 12
<post> what kind 1.000 3 3 <post> im an 1.000 2 2
in the back 1.000 3 3 <post> no idea 1.000 2 2
it should be 1.000 2 2 on fire </post> 1.000 2 2
know if i 1.000 3 3 <post> spin the 1.000 3 3
.action dances around 1.000 2 2 <post> will you 1.000 3 3
<post> oops sorry 1.000 2 2 <post> any nice 1.000 2 2
las vegas </post> 1.000 2 2 <post> and your 1.000 3 3
bunch of people 1.000 3 3 the last thing 1.000 2 2
the sake of 1.000 2 2 <post> how's that 1.000 2 2
when you were 1.000 2 2 ok lol </post> 1.000 2 2
are you talking 1.000 2 2 <post> people are 1.000 2 2
ladies want to 1.000 3 3 here lol </post> 1.000 2 2
<post> .action feels 1.000 6 6 <post> but i'll 1.000 2 2
<post> you just 1.000 4 4 <post> so are 1.000 2 2
just got a 1.000 2 2 my friend </post> 1.000 2 2
you like the 1.000 2 2 <post> my profile 1.000 2 2
lol me too 1.000 2 2 <post> lol is 1.000 3 3
<post> a </post> 1.000 2 2 <post> not </post> 1.000 3 3
<post> u wish 1.000 2 2 trying to work 1.000 2 2
have it. </post> 1.000 2 2 a slut </post> 1.000 2 2
i just finished 1.000 2 2 would be </post> 1.000 2 2
i told my 1.000 2 2 you know how 1.000 3 3
<post> .action tosses 1.000 2 2 <post> who </post> 1.000 3 3
just like the 1.000 2 2 i miss my 1.000 2 2
used to be 1.000 5 5 how to spell 1.000 3 3
at you </post> 1.000 2 2 <post> i also 1.000 2 2
are going to 1.000 4 4 <post> everyone is 1.000 2 2
<post> so is 1.000 3 3 seems to be 1.000 2 2
<post> well, i 1.000 3 3 years ago </post> 1.000 3 3
i know you 1.000 5 5 <post> so do 1.000 4 4
to go and 1.000 2 2 ha ha ha 1.000 3 3
<post> they had 1.000 2 2 im out </post> 1.000 2 2
to eat </post> 1.000 2 2 in it for 1.000 2 2
hey twisted </post> 1.000 2 2 and that was 1.000 2 2
he called me 1.000 2 2 <post> but it's 1.000 4 4
<post> .action sneezes. 1.000 2 2
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Trigram Entropy 40s Teen Trigram Entropy 40s Teen
<post> you would 1.000 3 3 and i know 1.000 2 2
<post> wb gaston 1.000 2 2 <post> tell me 1.000 4 4
<post> get the 1.000 2 2 trying to get 1.000 3 3
it should be 1.000 2 2 <post> .action cries. 1.000 3 3
<post> cause i 1.000 4 4 that all the 1.000 2 2
me up with 1.000 2 2 what are u 1.000 3 3
hey all </post> 1.000 8 8 <post> really </post> 1.000 2 2
<post> oops sorry 1.000 2 2 it in </post> 1.000 2 2
<post> u have 1.000 3 3 seen it </post> 1.000 2 2
thought u were 1.000 2 2 do you know 1.000 7 7
to be with 1.000 2 2 you in a 1.000 2 2
he doesnt want 1.000 2 2 <post> ahhh </post> 1.000 2 2
<post> sigh </post> 1.000 3 3 prepare to be 1.000 2 2
i just finished 1.000 2 2 <post> when you 1.000 2 2
<post> :-o </post> 1.000 7 7 <post> .action makes 1.000 3 3
just like the 1.000 2 2 is good </post> 1.000 7 7
for this room 1.000 2 2 <post> .action scratches 1.000 3 3
<post> thats not 1.000 4 4 that was the 1.000 2 2
<post> is he 1.000 3 3 don't think i 1.000 3 3
do you mean 1.000 2 2 hiya bob </post> 1.000 2 2
<post> wb red 1.000 2 2 why do you 1.000 3 3
girl lol </post> 1.000 2 2 .action cries. </post> 1.000 3 3
hey joe </post> 1.000 2 2 <post> go for 1.000 2 2
is back </post> 1.000 2 2 :tongue: :tongue: </post> 1.000 3 3
me ;-) </post> 1.000 2 2 thank you lol 1.000 2 2
i have another 1.000 2 2 u have to 1.000 4 4
<post> .action spanks 1.000 2 2 yes they do 1.000 2 2
<post> it will 1.000 2 2 shakes her head 1.000 2 2
there was a 1.000 2 2 i was gonna 1.000 3 3
<post> talk to 1.000 6 6 so i have 1.000 2 2
a clue </post> 1.000 2 2 i get that 1.000 2 2
are you talkin 1.000 2 2 to take a 1.000 2 2
me from the 1.000 2 2 <post> oh that 1.000 2 2
goes back to 1.000 2 2 if i had 1.000 5 5
i miss my 1.000 2 2 <post> like a 1.000 3 3
thought you were 1.000 6 6 <post> hey derby 1.000 3 3
don't know what 1.000 2 2 give you a 1.000 2 2
<post> i'm sorry 1.000 2 2
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Trigram Entropy 50s Teen Trigram Entropy 50s Teen
<post> what kind 1.000 3 3 <post> i always 0.985 3 4
wants me to 1.000 2 2 in front of 0.985 4 3
<post> did u 1.000 3 3 pm me im 0.985 3 4
i have the 1.000 2 2 <post> ha ha 0.985 3 4
came back to 1.000 2 2 <post> i must 0.985 3 4
to get rid 1.000 2 2 hello room </post> 0.971 4 6
i hope not 1.000 2 2 <post> so is 0.971 2 3
<post> why not? 1.000 2 2 hi everybody </post> 0.971 2 3
.action giggles. </post> 1.000 2 2 <post> have a 0.971 2 3
if you have 1.000 2 2 <post> am i 0.971 3 2
you are going 1.000 2 2 the world </post> 0.971 2 3
<post> .action giggles. 1.000 2 2 am back </post> 0.971 2 3
it in the 1.000 2 2 hiya dara </post> 0.971 3 2
<post> since when 1.000 3 3 <post> bye all 0.971 2 3
i have an 1.000 2 2 with you </post> 0.971 2 3
<post> there is 1.000 3 3 why do you 0.971 2 3
have to get 1.000 2 2 don't have to 0.971 2 3
a couple of 1.000 2 2 i am in 0.971 3 2
<post> same here 1.000 2 2 <post> how long 0.971 2 3
i'm back </post> 1.000 2 2 you want to 0.971 2 3
thats it </post> 1.000 2 2 i must be 0.971 2 3
back in a 1.000 3 3 <post> dont know 0.971 2 3
you live in 1.000 2 2 you are a 0.971 2 3
i think that 1.000 2 2 <post> hiya dara 0.971 3 2
you dont even 1.000 2 2 thanks for the 0.971 2 3
welcome back </post> 1.000 2 2 <post> hi everybody 0.971 2 3
be back in 1.000 2 2 a long time 0.971 2 3
there is a 1.000 2 2 <post> must be 0.971 3 2
have a job 1.000 2 2 <post> wake up 0.971 2 3
and i am 1.000 3 3 do you think 0.971 2 3
<post> what was 1.000 2 2 to do with 0.971 2 3
<post> lol ty 1.000 2 2 <post> its ok 0.971 2 3
:-) :-) :-) 0.996 6 7 have you ever 0.971 3 2
<post> hello room 0.991 4 5 hi joe </post> 0.971 2 3
so bored </post> 0.991 4 5 dont even have 0.971 2 3
<post> hey there 0.991 4 5 to hear that 0.971 2 3
i was a 0.991 4 5 bye all </post> 0.971 2 3
:-) :-) </post> 0.985 4 3
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Trigram Entropy Adult Teen Trigram Entropy Adult Teen
<post> get the 1.000 2 2 its not nice 1.000 2 2
<post> .action cant 1.000 2 2 <post> you'll get 1.000 2 2
so bored </post> 1.000 5 5 goin on? </post> 1.000 2 2
trying to work 1.000 2 2 ya i know 1.000 2 2
sup peeps </post> 1.000 2 2 <post> you probably 1.000 2 2
<post> hey!! </post> 1.000 2 2 <post> so yeah 1.000 3 3
what you do 1.000 3 3 a big ass 1.000 2 2
<post> need a 1.000 2 2 loves me </post> 1.000 5 5
<post> i speak 1.000 2 2 <post> its really 1.000 2 2
i swear to 1.000 4 4 <post> see u 1.000 2 2
<post> whats that? 1.000 2 2 never heard that 1.000 3 3
pretty cool </post> 1.000 2 2 chat, pm me 1.000 2 2
you put in 1.000 2 2 that made me 1.000 2 2
hiya bob </post> 1.000 2 2 bad lol </post> 1.000 2 2
with the name 1.000 2 2 stop talking about 1.000 3 3
not for me 1.000 2 2 i see. </post> 1.000 2 2
any girl from 1.000 2 2 times a day 1.000 3 3
he was in 1.000 2 2 a lot to 1.000 2 2
<post> gross </post> 1.000 6 6 know what? </post> 1.000 3 3
to what? </post> 1.000 2 2 <post> i wear 1.000 4 4
<post> .action moans. 1.000 3 3 no one want 1.000 2 2
<post> hey brb 1.000 2 2 to want to 1.000 2 2
.action laughs and 1.000 2 2 hate u </post> 1.000 2 2
<post> hey does 1.000 2 2 was it? </post> 1.000 2 2
up in a 1.000 4 4 havent talked to 1.000 2 2
<post> ty. </post> 1.000 2 2 do you? </post> 1.000 5 5
a night </post> 1.000 2 2 <post> .action pervs 1.000 2 2
hell yea </post> 1.000 2 2 will get you 1.000 2 2
is everyone today? 1.000 2 2 not in this 1.000 2 2
in the mood 1.000 5 5 big deal </post> 1.000 2 2
you calling me 1.000 2 2 last thing i 1.000 2 2
wanna chat, pm 1.000 2 2 .action takes out 1.000 2 2
a go go 1.000 2 2 <post> now you're 1.000 2 2
to stay </post> 1.000 2 2 i seem to 1.000 3 3
sits back and 1.000 2 2 hey holly </post> 1.000 6 6
don't know who 1.000 3 3 i havent talked 1.000 2 2
my asl </post> 1.000 2 2 <post> laffs </post> 1.000 2 2
<post> because you're 1.000 2 2
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APPENDIX C: HIGH-FREQUENCY-BASED STOP WORD LISTS  

This appendix contains the 75 n-grams in the high-frequency-based stop 

n-gram lists for the sixth random training set, which produced the best results for 

the teens versus adults classification task.  This same set also performed well in 

the other classification tasks.  Tables 52–66 contain the n-gram as well as its 

usage by the teens and the other age group in the classification task. 

 



Unigram  Teen 20s Unigram  Teen 20s

.action 1511 2180 know 326 705

a 1828 4173 like 552 1159

about 223 470 lmao 242 681

all 350 981 lol 1987 5489

am 155 583 me 1206 2273

and 1184 2793 my 841 1910

any 402 801 no 485 1043

are 464 1256 not 564 1288

at 255 610 of 573 1562

be 398 925 oh 236 472

but 443 866 ok 221 450

can 243 638 on 572 1286

chat 399 627 one 261 608

do 423 924 or 236 517

don't 187 469 out 227 553

dont 390 698 pm 390 627

for 515 1237 so 471 952

from 219 580 that 805 1921

get 324 753 the 1683 4162

go 267 577 they 218 469

good 233 805 think 177 447

got 210 446 this 246 515

have 529 1294 to 1734 4129

he 279 537 too 230 524

her 240 520 u 630 1475

here 277 718 up 367 787

hey 740 1822 wanna 455 462

hi 360 1252 want 249 650

how 294 762 was 491 1014

i 3459 7610 we 151 443

i'm 332 853 well 209 475

if 302 660 what 388 985

im 759 1202 with 482 1177

in 855 2005 ya 143 442

is 1029 2542 yes 162 440

it 900 2041 you 1594 3427

its 298 601 your 318 906

just 398 929

Teens Versus 20s Teens Versus 20s

 

Table 52.   Mutual High-Frequency Stop Unigrams for Teens Versus 20s 
Classification Task. 

92 
 



Unigram  Teen 30s Unigram  Teen 30s

. 240 304 it's 127 259

.action 1511 1307 just 398 449

a 1828 2377 know 326 354

about 223 286 like 552 625

all 350 583 lmao 242 368

an 146 259 lol 1987 2304

and 1184 1743 me 1206 896

are 464 567 my 841 1091

at 255 375 no 485 499

back 202 264 not 564 686

be 398 472 of 573 993

but 443 494 oh 236 400

can 243 317 ok 221 344

did 152 254 on 572 749

do 423 481 one 261 352

don't 187 395 or 236 309

for 515 810 out 227 336

from 219 304 so 471 487

get 324 440 some 183 264

go 267 313 that 805 1289

good 233 416 the 1683 2683

got 210 268 they 218 398

haha 129 379 think 177 281

have 529 778 this 246 301

he 279 382 to 1734 2258

hello 107 356 too 230 388

her 240 316 u 630 463

here 277 338 up 367 384

hey 740 1015 was 491 654

hi 360 757 wb 144 341

how 294 366 we 151 270

i 3459 3816 well 209 323

i'm 332 459 what 388 504

if 302 385 with 482 533

im 759 391 ya 143 315

in 855 1353 you 1594 1816

is 1029 1440 your 318 400

it 900 1063
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Unigram  Teen 40s Unigram  Teen 40s

.action 1511 861 like 552 409

:) 158 597 lol 1987 4479

a 1828 1712 love 217 179

about 223 180 me 1206 737

all 350 487 my 841 671

am 155 247 no 485 404

and 1184 1208 not 564 501

are 464 527 now 182 178

at 255 310 of 573 630

back 202 232 oh 236 233

be 398 411 ok 221 284

but 443 280 on 572 490

can 243 282 one 261 214

did 152 196 or 236 182

do 423 350 out 227 226

don't 187 259 see 151 227

for 515 594 she 192 209

from 219 175 so 471 290

get 324 253 that 805 916

go 267 194 the 1683 1851

good 233 384 there 216 284

have 529 494 they 218 222

he 279 295 this 246 193

hello 107 267 to 1734 1548

her 240 267 too 230 359

here 277 405 u 630 259

hey 740 1422 up 367 257

hi 360 2576 was 491 491

hiya 269 292 wb 144 493

how 294 275 we 151 224

i 3459 2665 well 209 201

i'm 332 294 what 388 427

if 302 223 with 482 338

in 855 949 ya 143 281

is 1029 1227 yes 162 183

it 900 807 you 1594 1587

just 398 436 your 318 337

know 326 314
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Unigram  Teen 50s Unigram  Teen 50s

a 1828 309 it 900 108

all 350 75 its 298 30

am 155 35 just 398 52

an 146 34 like 552 53

and 1184 201 lmao 242 38

any 402 55 lol 1987 331

are 464 66 love 217 30

as 131 30 me 1206 135

at 255 34 my 841 111

back 202 50 no 485 51

be 398 67 not 564 76

but 443 41 now 182 29

can 243 79 of 573 122

chat 399 62 on 572 75

did 152 34 or 236 30

do 423 41 out 227 47

don't 187 32 pm 390 62

for 515 105 room 116 29

from 219 33 so 471 44

get 324 39 that 805 117

go 267 37 the 1683 317

good 233 40 there 216 30

got 210 34 they 218 42

has 115 29 think 177 35

have 529 94 to 1734 265

he 279 34 too 230 37

hello 107 59 u 630 29

here 277 55 up 367 35

hey 740 101 want 249 52

hi 360 309 was 491 70

his 110 29 we 151 30

hiya 269 87 what 388 42

how 294 37 when 163 36

i 3459 394 where 107 30

i'm 332 40 with 482 66

if 302 37 you 1594 219

in 855 191 your 318 45

is 1029 158
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Unigram  Teen  Adult Unigram  Teen  Adult

.action 1511 5038 know 326 1348

a 1828 8139 like 552 2148

about 223 997 lmao 242 871

all 350 1980 lol 1987 10532

am 155 951 me 1206 3934

and 1184 5770 my 841 3725

any 402 1090 no 485 1976

are 464 2381 not 564 2482

at 255 1275 of 573 3165

be 398 1879 oh 236 1169

but 443 1599 ok 221 1099

can 243 1311 on 572 2618

do 423 1673 one 261 1162

don't 187 988 or 236 1006

dont 390 1107 out 227 1149

for 515 2615 pm 390 936

from 219 1050 so 471 1719

get 324 1480 that 805 3919

go 267 1119 the 1683 8788

good 233 1517 there 216 925

got 210 872 they 218 1047

have 529 2472 think 177 881

he 279 1209 this 246 1063

hello 107 1070 to 1734 8531

her 240 1064 too 230 1069

here 277 1376 u 630 2057

hey 740 4147 up 367 1430

hi 360 4770 want 249 995

how 294 1518 was 491 2080

i 3459 13921 wb 144 1051

i'm 332 1540 we 151 927

if 302 1374 well 209 1033

im 759 1818 what 388 1918

in 855 4339 with 482 2127

is 1029 5692 ya 143 1048

it 900 4014 you 1594 7002

its 298 1022 your 318 1708

just 398 1817
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Bigram  Teen 20s Bigram  Teen 20s

.action is 63 196 <post> you 271 527

:) </post> 150 320 ? </post> 52 239

<post> !seen 97 189 all </post> 74 228

<post> .action 1511 2180 and i 93 194

<post> and 262 509 are you 108 244

<post> any 248 534 chat with 69 234

<post> but 189 311 have a 105 273

<post> bye 81 235 have to 87 198

<post> good 63 234 here </post> 98 326

<post> haha 119 209 hi </post> 77 204

<post> hello 90 365 i am 96 447

<post> hey 692 1760 i can 69 183

<post> hi 323 1189 i don't 81 227

<post> how 146 381 i dont 184 290

<post> i 1651 3468 i have 152 401

<post> i'm 152 429 i know 111 249

<post> im 381 640 i like 95 186

<post> it 132 233 i love 123 200

<post> its 148 290 i think 85 222

<post> lmao 209 653 i was 171 328

<post> lol 1546 4847 in the 173 394

<post> my 150 258 is a 71 208

<post> no 269 590 it </post> 152 360

<post> not 116 248 lmao </post> 133 381

<post> oh 215 414 lol </post> 1424 3827

<post> ok 161 268 me </post> 452 833

<post> so 149 320 of the 60 198

<post> that 104 258 on the 82 221

<post> thats 132 202 pm me 320 457

<post> the 87 238 that </post> 75 190

<post> u 102 262 to be 100 221

<post> wb 137 265 to chat 96 274

<post> well 165 332 to the 55 222

<post> what 171 407 wanna chat 226 208

<post> whats 82 183 want to 145 398

<post> why 72 184 with a 79 268

<post> yeah 164 279 you </post> 130 204

<post> yes 128 361
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91

81

96

85

Bigram  Teen 30s Bigram  Teen 30s

.action is 63 179 are you 108 99

:) </post> 150 131 but i 81

<post> .action 1511 1307 for a 59

<post> and 262 271 haha </post> 89 369

<post> any 248 84 have a 105 146

<post> but 189 127 have to 87 138

<post> bye 81 85 here </post> 98 120

<post> good 63 118 i am 96 151

<post> haha 119 164 i can 69 85

<post> he 89 102 i don't 81 188

<post> hello 90 346 i dont 184 101

<post> hey 692 973 i have 152 212

<post> hi 323 728 i just 77 83

<post> how 146 192 i know 111 111

<post> i 1651 1519 i like 95 89

<post> i'm 152 164 i think 85 165

<post> im 381 205 i was 171 173

<post> is 95 89 if you 69 89

<post> it 132 107 in a 70

<post> lmao 209 351 in the 173 271

<post> lol 1546 1751 is a 71 106

<post> my 150 158 it </post> 152 156

<post> no 269 240 it was 54 93

<post> not 116 150 lmao </post> 133 201

<post> oh 215 377 lol </post> 1424 1423

<post> ok 161 231 me </post> 452 178

<post> so 149 168 now </post> 58 86

<post> that 104 106 of the 60 150

<post> the 87 107 ok </post> 124 94

<post> ty 62 125 on the 82 147

<post> wb 137 337 that </post> 75 97

<post> well 165 178 to be 100 91

<post> what 171 184 to the 55 139

<post> yeah 164 191 too </post> 74 121

<post> yes 128 124 want to 145 85

<post> you 271 280 with a 79

all </post> 74 145 you </post> 130 106

and i 93 101
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66

18

75

87

Bigram  Teen 40s Bigram  Teen 40s

. </post> 186 112 <post> yes 128 143

.action is 63 97 <post> you 271 259

:) </post> 150 504 all </post> 74 124

<post> .action 1511 861 and i 93

<post> and 262 154 are you 108 107

<post> but 189 74 back </post> 58 76

<post> bye 81 104 do you 74 74

<post> gm 56 226 have a 105 1

<post> good 63 133 have to 87 67

<post> he 89 74 here </post> 98 114

<post> hello 90 212 i am 96 190

<post> hey 692 1379 i can 69 62

<post> hi 323 2519 i don't 81 104

<post> hiya 263 279 i have 152 131

<post> how 146 129 i know 111 84

<post> i 1651 1021 i like 95 69

<post> i'm 152 152 i think 85 82

<post> is 95 135 i was 171 135

<post> it 132 90 in a 70

<post> it's 68 65 in the 173 212

<post> lmao 209 97 is a 71

<post> lol 1546 2463 it </post> 152 107

<post> me 65 85 it is 53 73

<post> my 150 77 it was 54 78

<post> no 269 217 lmao </post> 133 72

<post> not 116 97 lol </post> 1424 2834

<post> oh 215 212 lol. </post> 65 95

<post> ok 161 181 me </post> 452 106

<post> omg 83 106 of the 60 85

<post> so 149 77 on the 82 84

<post> that 104 96 that </post> 75 75

<post> thats 132 77 to be 100 93

<post> the 87 109 too </post> 74 101

<post> ty 62 187 want to 145 70

<post> wb 137 430 you </post> 130 77

<post> well 165 134 you are 58 76

<post> what 171 172 you? </post> 60 67

<post> yeah 164 104
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10

18

18

13

9

Bigram  Teen 50s Bigram  Teen 50s

:) </post> 150 15 and i 93

<post> .action 1511 23 are you 108 8

<post> and 262 27 back </post> 58 19

<post> any 248 42 chat pm 79 9

<post> but 189 8 for a 59

<post> gm 56 31 going to 57 8

<post> good 63 13 have a 105 26

<post> hello 90 53 have to 87 14

<post> hey 692 97 here </post> 98 12

<post> hi 323 307 i am 96 29

<post> hiya 263 79 i don't 81 11

<post> how 146 17 i have 152 23

<post> i 1651 127 i love 123 8

<post> i'm 152 13 i think 85 19

<post> im 381 8 i was 171 19

<post> is 95 26 in a 70

<post> it 132 17 in the 173 30

<post> lmao 209 37 is a 71

<post> lol 1546 258 it </post> 152 10

<post> my 150 12 it is 53 10

<post> no 269 20 lol </post> 1424 150

<post> not 116 17 me </post> 452 63

<post> oh 215 23 now </post> 58 12

<post> ok 161 11 of the 60 16

<post> omg 83 14 on the 82 14

<post> so 149 9 pm me 320 50

<post> the 87 15 that </post> 75 13

<post> they 58 8 to be 100 17

<post> ty 62 28 to chat 96 11

<post> u 102 10 to the 55 11

<post> wb 137 27 too </post> 74 11

<post> well 165 20 want to 145 16

<post> what 171 15 with a 79

<post> who 91 11 you </post> 130 27

<post> yes 128 19 you are 58 13

<post> you 271 20 you have 54 8

? </post> 52 21 you? </post> 60 8

all </post> 74 28

Teens Versus 50s Teens Versus 50s

 

Table 60.   Mutual High-Frequency Stop Bigrams for Teens Versus 50s 
Classification Task. 



Bigram  Teen  Adult Bigram  Teen  Adult

.action is 63 995 <post> yes 128 559

:) </post> 150 758 <post> you 271 1010

<post> .action 1511 5038 ? </post> 52 315

<post> and 262 893 all </post> 74 488

<post> any 248 639 and i 93 354

<post> but 189 551 are you 108 499

<post> bye 81 384 have a 105 517

<post> good 63 416 have to 87 389

<post> he 89 335 here </post> 98 479

<post> hello 90 997 i am 96 728

<post> hey 692 4006 i can 69 350

<post> hi 323 4641 i don't 81 404

<post> hiya 263 462 i dont 184 473

<post> how 146 742 i have 152 681

<post> i 1651 5985 i know 111 435

<post> i'm 152 739 i like 95 334

<post> if 91 320 i love 123 342

<post> im 381 886 i think 85 460

<post> is 95 345 i was 171 647

<post> it 132 471 in the 173 864

<post> its 148 427 is a 71 404

<post> lmao 209 802 it </post> 152 664

<post> lol 1546 8219 lmao </post> 133 540

<post> my 150 485 lol </post> 1424 7035

<post> no 269 1080 me </post> 452 1158

<post> not 116 500 of the 60 405

<post> oh 215 1059 ok </post> 124 334

<post> ok 161 674 on the 82 438

<post> so 149 525 pm me 320 580

<post> that 104 454 that </post> 75 364

<post> thats 132 367 to be 100 418

<post> the 87 468 to chat 96 364

<post> ty 62 478 to the 55 431

<post> u 102 322 too </post> 74 363

<post> wb 137 988 want to 145 538

<post> well 165 685 with a 79 417

<post> what 171 770 you </post> 130 436

<post> yeah 164 591

Teens Versus AdultsTeens Versus Adults

 

Table 61.   Mutual High-Frequency Stop Bigrams for Teens Versus Adults 
Classification Task. 
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83

47

47

91

Trigram  Teen  Adult Trigram  Teen  Adult

<post> !scramble </post> 6 87 <post> i was 67 131

<post> .action is 63 196 <post> i'm not 15 55

<post> .action looks 15 66 <post> im not 39 64

<post> :) </post> 57 84 <post> it was 20 53

<post> :‐o </post> 8 75 <post> lmao </post> 105 360

<post> :o </post> 28 60 <post> lol </post> 1042 3236

<post> ;) </post> 8 66 <post> lol i 35

<post> ? </post> 34 55 <post> lol! </post> 12 67

<post> and i 35 61 <post> lol. </post> 35 58

<post> any ladies 17 273 <post> me too 18 48

<post> brb </post> 46 100 <post> no </post> 51 107

<post> but i 34 59 <post> oh </post> 30 47

<post> do you 19 48 <post> ok </post> 90 82

<post> haha </post> 81 140 <post> that is 6 52

<post> hahaha </post> 23 72 <post> well i 17

<post> hehe </post> 19 54 <post> whats up 29 66

<post> hello </post> 26 105 <post> wow </post> 33 46

<post> hey </post> 62 92 <post> yeah </post> 53 71

<post> hey all 17 46 <post> yeah i 13

<post> hey everyone 21 52 <post> yes </post> 42 105

<post> hey room 22 47 <post> yw </post> 35 51

<post> hi </post> 69 181 any ladies wanna 9 94

<post> how are 27 111 chat pm me 76 107

<post> i am 48 206 chat with a 33 181

<post> i can 23 65 hey everyone </post> 20 46

<post> i do 26 55 how are you 15 73

<post> i don't 42 116 i have a 43

<post> i dont 92 145 i have to 27 61

<post> i got 32 68 i know </post> 28 47

<post> i hate 41 62 i want to 18 59

<post> i have 80 214 in here </post> 24 48

<post> i just 39 83 ladies wanna chat 11 76

<post> i know 60 124 pm me </post> 225 348

<post> i like 67 116 to chat with 28 170

<post> i love 86 121 to me </post> 25 60

<post> i need 26 78 wanna chat pm 49 89

<post> i think 49 119 want to chat 62 196

<post> i want 32 80

Teens Versus 20s Teens Versus 20s

 

Table 62.   Mutual High-Frequency Stop Trigrams for Teens Versus 20s 
Classification Task. 
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20

26

23

29

20

0 20

55

34

Trigram  Teen  Adult Trigram  Teen  Adult

<post> .action gets 16 24 <post> i was 67 58

<post> .action gives 25 22 <post> i'm not 15 21

<post> .action has 19 26 <post> if i 18

<post> .action is 63 179 <post> it is 12 22

<post> .action looks 15 33 <post> it was 20 20

<post> .action sits 28 48 <post> lmao </post> 105 186

<post> :) </post> 57 28 <post> lmfao </post> 30 114

<post> and i 35 31 <post> lol </post> 1042 909

<post> any ladies 17 28 <post> lol i 35

<post> brb </post> 46 41 <post> me too 18 27

<post> but i 34 25 <post> no i 20

<post> cool </post> 14 29 <post> oh </post> 30 28

<post> did you 12 23 <post> ok </post> 90 38

<post> haha </post> 81 155 <post> omg </post> 41 21

<post> hahaha </post> 23 54 <post> that was 22 25

<post> hello </post> 26 30 <post> ty </post> 19 24

<post> hey </post> 62 33 <post> well i 17

<post> hi </post> 69 39 <post> what is 16 23

<post> hi all 13 50 <post> yea </post> 44 21

<post> how are 27 36 <post> yeah i 13

<post> i am 48 72 <post> yep </post> 19 27

<post> i can 23 26 <post> yes </post> 42 37

<post> i do 26 26 <post> you are 12 20

<post> i don't 42 63 <post> you know 15 22

<post> i dont 92 50 <post> yw </post> 35 68

<post> i dunno 17 33 a lot of 9 21

<post> i got 32 22 hi all </post> 12 38

<post> i had 15 30 i don't know 21 32

<post> i hate 41 26 i had a 1

<post> i have 80 74 i have a 43

<post> i just 39 31 i have to 27 41

<post> i know 60 43 i know </post> 28 20

<post> i like 67 41 i need to 21 22

<post> i love 86 40 i think i 19

<post> i need 26 21 i used to 10 20

<post> i think 49 84 pm me </post> 225 27

<post> i thought 32 20 you have to 15 24

<post> i want 32 25

Teens Versus 30s Teens Versus 30s

 

Table 63.   Mutual High-Frequency Stop Trigrams for Teens Versus 30s 
Classification Task. 
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52

18

25

14

Trigram  Teen  Adult Trigram  Teen  Adult

<post> .action has 19 43 <post> is that 18 21

<post> .action is 63 97 <post> it is 12 20

<post> .action looks 15 52 <post> it was 20 25

<post> .action sits 28 19 <post> lmao </post> 105 44

<post> :) </post> 57 38 <post> lol </post> 1042 933

<post> :‐) </post> 29 43 <post> lol @ 32

<post> ;‐) </post> 23 14 <post> me too 18 50

<post> ? </post> 34 15 <post> no </post> 51 16

<post> and i 35 17 <post> ok </post> 90 30

<post> are you 31 18 <post> omg </post> 41 15

<post> back </post> 10 19 <post> oops </post> 11 16

<post> brb </post> 46 45 <post> thank you 13 19

<post> can i 9 13 <post> this is 15 15

<post> did you 12 14 <post> ty </post> 19 18

<post> do you 19 18 <post> well i 17

<post> hello </post> 26 21 <post> what is 16 20

<post> hi </post> 69 30 <post> who is 11 14

<post> hi all 13 44 <post> yep </post> 19 24

<post> how are 27 27 <post> yes </post> 42 18

<post> i am 48 82 <post> you are 12 14

<post> i can 23 18 <post> you can 8 15

<post> i do 26 15 <post> you have 12 15

<post> i don't 42 44 <post> you know 15 23

<post> i dont 92 17 are you? </post> 21 17

<post> i had 15 15 for me </post> 9 13

<post> i have 80 51 hi all </post> 12 44

<post> i just 39 28 how are you 15 21

<post> i know 60 39 i am not 13 20

<post> i like 67 38 i don't know 21 15

<post> i love 86 38 i have a 43

<post> i need 26 18 i have to 27 18

<post> i see 19 16 i know </post> 28 14

<post> i think 49 28 i need to 21 13

<post> i wanna 26 15 i want to 18 15

<post> i want 32 14 me too </post> 15 14

<post> i was 67 54 what do you 9 18

<post> i would 17 25 you have a 9

<post> i'm not 15 17

Teens Versus 40s Teens Versus 40s

 

Table 64.   Mutual High-Frequency Stop Trigrams for Teens Versus 40s 
Classification Task. 
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6

2

1 2

6

3

Trigram  Teen  Adult Trigram  Teen  Adult

:love: :love: </post> 12 5 <post> me too 18 2

<post> .action is 63 4 <post> of course 9 2

<post> :‐) </post> 29 5 <post> oh ok 10 2

<post> ;‐) </post> 23 4 <post> ok </post> 90 2

<post> ? </post> 34 3 <post> omg </post> 41 2

<post> and i 35 3 <post> sorry </post> 12 2

<post> any ladies 17 34 <post> that was 22 3

<post> back </post> 10 5 <post> ty </post> 19 2

<post> brb </post> 46 4 <post> well i 17

<post> hello </post> 26 3 <post> wow </post> 33 4

<post> hey </post> 62 3 <post> yeah i 13

<post> hey room 22 3 <post> you are 12 3

<post> hi </post> 69 4 <post> you know 15 4

<post> hi all 13 4 <post> yw </post> 35 4

<post> how are 27 4 a lot of 9 4

<post> i am 48 4 chat pm me 76 9

<post> i did 10 2 for me to 9 2

<post> i do 26 3 have a good 9 2

<post> i dunno 17 2 hello everyone </post> 8 2

<post> i got 32 2 hey room </post> 16 3

<post> i have 80 8 hi all </post> 12 3

<post> i just 39 4 how are you 15 4

<post> i know 60 2 i don't know 21 3

<post> i like 67 4 i got a 1

<post> i love 86 4 i have a 43

<post> i saw 8 2 i have to 27 2

<post> i see 19 2 i like the 10 2

<post> i think 49 11 i love the 11 2

<post> i was 67 6 i think i 19

<post> i would 17 2 i thought you 10 2

<post> i'm so 8 2 i used to 10 3

<post> im a 19 2 i want to 18 2

<post> is that 18 3 in here </post> 24 2

<post> it was 20 4 know how to 16 2

<post> lmao </post> 105 4 pm me </post> 225 45

<post> lol </post> 1042 79 to me </post> 25 3

<post> lol @ 32 5 want to chat 62 5

<post> lol i 35 3
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Table 65.   Mutual High-Frequency Stop Trigrams for Teens Versus 50s 
Classification Task. 
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128

110

98

85

195

151

77

Trigram  Teen  Adult Trigram  Teen  Adult

.action looks at 6 96 <post> i'm not 15 90

<post> !scramble </post> 6 354 <post> im not 39 97

<post> .action is 63 995 <post> it was 20 97

<post> .action looks 15 169 <post> lmao </post> 105 477

<post> .action sits 28 125 <post> lmfao </post> 30 155

<post> :) </post> 57 142 <post> lol </post> 1042 4866

<post> :‐) </post> 29 84 <post> lol @ 32

<post> and i 35 97 <post> lol i 35

<post> any ladies 17 280 <post> lol. </post> 35 98

<post> are you 31 96 <post> me too 18 90

<post> brb </post> 46 180 <post> no </post> 51 134

<post> but i 34 99 <post> ok </post> 90 140

<post> haha </post> 81 193 <post> that is 6 81

<post> hahaha </post> 23 137 <post> that was 22 86

<post> hello </post> 26 156 <post> ty </post> 19 103

<post> hello all 7 102 <post> well i 17

<post> hey </post> 62 148 <post> what is 16 84

<post> hi </post> 69 208 <post> whats up 29 88

<post> hi all 13 117 <post> yeah </post> 53 94

<post> how are 27 204 <post> yeah i 13

<post> how is 8 81 <post> yep </post> 19 95

<post> i am 48 331 <post> yes </post> 42 143

<post> i can 23 112 <post> you know 15 83

<post> i do 26 78 <post> yw </post> 35 146

<post> i don't 42 183 are you? </post> 21 79

<post> i dont 92 232 chat pm me 76 80

<post> i got 32 102 chat with a 33

<post> i had 15 86 hi all </post> 12 101

<post> i hate 41 113 how are you 15 134

<post> i have 80 315 i have a 43

<post> i just 39 148 i have to 27 118

<post> i know 60 214 i know </post> 28 80

<post> i like 67 197 i think i 19

<post> i love 86 199 pm me </post> 225 403

<post> i need 26 114 to chat with 28 188

<post> i think 49 242 to me </post> 25 78

<post> i want 32 102 want to chat 62 214

<post> i was 67 241
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Table 66.   Mutual High-Frequency Stop Trigrams for Teens Versus Adults 
Classification Task. 
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APPENDIX D: NAÏVE BAYES CLASSIFIER RESULTS 

This appendix contains the Naïve Bayes Classifier results.  The results for 

each classification task are ranked by average F-score.  In order to exclude 

outliers, the average F-score was calculated without the highest and lowest F-

score measure from the 10 random test sets.  The lowest and highest F-score 

results, however, are included in the tables as separate columns.  The average 

number of true positives, false positives, true negatives, false negatives, 

precision and recall do not omit the highest/lowest respective value from the 10 

random test set results. Tables 67–70 display the Naïve Bayes Classifier results 

for each classification task. 

 



Classification

Task
Feature

Teen

Training

Files

Adult

Training

Files

True

Positives

False

Positives

False 

Negatives

True 

Negatives
 Precision  Recall

Low

F‐Score

High

F‐Score

Average

F‐Score

Trigram 465 689 104.2 77.9 11.8 94.1 0.567 0.898 0.438 0.766 0.717

3 Character Gram 465 689 57.6 56.4 58.4 115.6 0.439 0.497 0.054 0.818 0.466

Unigram 465 689 53.5 45.7 62.5 126.3 0.482 0.461 0.105 0.827 0.462

4 Character Gram 465 689 47.7 36.7 68.3 135.3 0.488 0.411 0.026 0.866 0.433

5 Character Gram 465 689 27.6 32.3 88.4 139.7 0.390 0.238 0.000 0.629 0.285

Bigram 465 689 20.2 45.3 95.8 126.7 0.278 0.174 0.038 0.419 0.207

3 Character Gram 465 259 115.3 28.1 0.7 36.9 0.804 0.994 0.879 0.899 0.889

Bigram 465 259 109.9 28.6 6.1 36.4 0.790 0.947 0.627 0.903 0.884

4 Character Gram 465 259 108.1 22.8 7.9 42.2 0.825 0.932 0.774 0.924 0.880

5 Character Gram 465 259 102.9 20.2 13.1 44.8 0.830 0.887 0.561 0.947 0.879

Unigram 465 259 110.6 30.4 5.4 34.6 0.783 0.953 0.707 0.896 0.873

Trigram 465 259 114.7 37.1 1.3 27.9 0.756 0.989 0.844 0.869 0.857

4 Character Gram 465 235 114.4 9.9 1.6 49.1 0.921 0.986 0.921 0.970 0.954

5 Character Gram 465 235 114.3 10.5 1.7 48.5 0.916 0.985 0.904 0.967 0.953

3 Character Gram 465 235 114.7 12.6 1.3 46.4 0.901 0.989 0.915 0.963 0.944

Unigram 465 235 114.2 12.3 1.8 46.7 0.903 0.984 0.890 0.979 0.944

Bigram 465 235 115.2 15.2 0.8 43.8 0.884 0.993 0.905 0.954 0.937

Trigram 465 235 115 16.2 1 42.8 0.877 0.991 0.900 0.963 0.930

Trigram 465 80 114.6 4.7 1.4 15.3 0.961 0.988 0.957 0.987 0.975

3 Character Gram 465 80 116 11.4 0 8.6 0.911 1.000 0.939 0.967 0.953

Unigram 465 80 115.9 12.3 0.1 7.7 0.904 0.999 0.939 0.955 0.950

Bigram 465 80 115.9 13.1 0.1 6.9 0.899 0.999 0.935 0.963 0.945

4 Character Gram 465 80 116 13.6 0 6.4 0.895 1.000 0.932 0.959 0.945

5 Character Gram 465 80 115.9 15.7 0.1 4.3 0.881 0.999 0.924 0.947 0.936

Trigram 465 1263 79.3 110.2 36.7 205.8 0.406 0.684 0.245 0.699 0.516

3 Character Gram 465 1263 44.2 60.8 71.8 255.2 0.364 0.381 0.022 0.730 0.363

Unigram 465 1263 35.3 50.7 80.7 265.3 0.365 0.304 0.000 0.814 0.305

4 Character Gram 465 1263 22 41.5 94 274.5 0.269 0.190 0.000 0.600 0.199

Bigram 465 1263 15.5 53.2 100.5 262.8 0.205 0.134 0.000 0.347 0.157

5 Character Gram 465 1263 7.7 31.6 108.3 284.4 0.170 0.066 0.000 0.275 0.083

Teens vs. 30s

Teens vs. 40s

Teens vs. 50s

Teens vs. Adults

Teens vs. 20s

 

Table 67.   Naïve Bayes Classifier Results Ranked by Average F-score for Each Classification Task (Whitten-
Bell Smoothing with Punctuation). 
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Classification

Task
Feature

Teen

Training

Files

Adult

Training

Files

True

Positives

False

Positives

False 

Negatives

True 

Negatives
 Precision  Recall

Low

F‐Score

High

F‐Score

Average

F‐Score

Trigram 465 689 104.7 77.1 11.3 94.9 0.559 0.903 0.194 0.764 0.741

3 Character Gram 465 689 56 56.2 60 115.8 0.424 0.483 0.011 0.824 0.452

4 Character Gram 465 689 44.2 35.7 71.8 136.3 0.462 0.381 0.025 0.871 0.394

5 Character Gram 465 689 31.2 30.3 84.8 141.7 0.398 0.269 0.000 0.752 0.295

Unigram 465 689 27.4 45.8 88.6 126.2 0.335 0.236 0.035 0.611 0.261

Bigram 465 689 19.9 45.6 96.1 126.4 0.283 0.172 0.061 0.383 0.210

5 Character Gram 465 259 104.5 20 11.5 45 0.834 0.901 0.564 0.939 0.889

4 Character Gram 465 259 109.2 22.6 6.8 42.4 0.829 0.941 0.771 0.921 0.889

3 Character Gram 465 259 113.3 27.7 2.7 37.3 0.804 0.977 0.850 0.903 0.883

Bigram 465 259 109 32.4 7 32.6 0.765 0.940 0.531 0.885 0.873

Unigram 465 259 108.1 29.8 7.9 35.2 0.780 0.932 0.587 0.899 0.872

Trigram 465 259 114.9 38.5 1.1 26.5 0.749 0.991 0.843 0.867 0.853

5 Character Gram 465 235 114.3 9.7 1.7 49.3 0.922 0.985 0.904 0.971 0.956

4 Character Gram 465 235 114.3 11.1 1.7 47.9 0.912 0.985 0.907 0.967 0.949

Unigram 465 235 114.1 10.7 1.9 48.3 0.915 0.984 0.908 0.983 0.948

3 Character Gram 465 235 114.1 15 1.9 44 0.884 0.984 0.874 0.947 0.936

Bigram 465 235 115.4 17.3 0.6 41.7 0.870 0.995 0.899 0.950 0.929

Trigram 465 235 115.2 22.1 0.8 36.9 0.840 0.993 0.887 0.939 0.909

Trigram 465 80 114.6 5.6 1.4 14.4 0.953 0.988 0.952 0.979 0.971

Unigram 465 80 115.9 12.7 0.1 7.3 0.901 0.999 0.939 0.955 0.948

3 Character Gram 465 80 116 13.2 0 6.8 0.898 1.000 0.935 0.955 0.946

Bigram 465 80 115.9 13.8 0.1 6.2 0.894 0.999 0.935 0.955 0.943

4 Character Gram 465 80 116 14.1 0 5.9 0.892 1.000 0.932 0.955 0.943

5 Character Gram 465 80 116 14.6 0 5.4 0.888 1.000 0.928 0.951 0.941

Trigram 465 1263 98.6 113.1 17.4 202.9 0.452 0.850 0.141 0.712 0.630

3 Character Gram 465 1263 46.2 58.5 69.8 257.5 0.371 0.398 0.000 0.765 0.376

4 Character Gram 465 1263 30 37.6 86 278.4 0.316 0.259 0.000 0.744 0.251

Bigram 465 1263 18.4 53.7 97.6 262.3 0.238 0.159 0.021 0.366 0.187

5 Character Gram 465 1263 15.7 30.9 100.3 285.1 0.277 0.135 0.000 0.610 0.145

Unigram 465 1263 14.4 46.6 101.6 269.4 0.201 0.124 0.000 0.376 0.143

Teens vs. 20s

Teens vs. 30s

Teens vs. 40s

Teens vs. 50s

Teens vs. Adults

 

Table 68.   Naïve Bayes Classifier Results Ranked by Average F-score for Each Classification Task (Whitten-
Bell Smoothing without Punctuation). 

109 
 



Classification

Task
Feature

Teen

Training

Files

Adult

Training

Files

True

Positives

False

Positives

False 

Negatives

True 

Negatives

 

Precision
 Recall

Low

F‐Score

High

F‐Score

Average

F‐Score

Trigram 465 689 2.6 12.4 113.4 159.6 0.114 0.022 0.000 0.240 0.015

Bigram 465 689 0.3 3.5 115.7 168.5 0.073 0.003 0.000 0.017 0.004

3 Character Gram 465 689 0 0 116 172 0.000 0.000 0.000 0.000 0.000

4 Character Gram 465 689 0 0.2 116 171.8 0.000 0.000 0.000 0.000 0.000

5 Character Gram 465 689 0 0.9 116 171.1 0.000 0.000 0.000 0.000 0.000

Unigram 465 689 0 0.1 116 171.9 0.000 0.000 0.000 0.000 0.000

Trigram 465 259 105.8 28.1 10.2 36.9 0.784 0.912 0.520 0.910 0.869

Bigram 465 259 77.1 25.2 38.9 39.8 0.699 0.665 0.144 0.889 0.691

5 Character Gram 465 259 19 7.1 97 57.9 0.513 0.164 0.000 0.779 0.183

Unigram 465 259 19.9 10.7 96.1 54.3 0.406 0.172 0.000 0.839 0.163

4 Character Gram 465 259 6.4 4.7 109.6 60.3 0.369 0.055 0.000 0.325 0.073

3 Character Gram 465 259 2.1 1.5 113.9 63.5 0.185 0.018 0.000 0.167 0.020

Unigram 465 235 107.6 11.1 8.4 47.9 0.906 0.928 0.548 0.967 0.943

5 Character Gram 465 235 104.8 8.7 11.2 50.3 0.920 0.903 0.475 0.971 0.941

Bigram 465 235 115.6 20.5 0.4 38.5 0.850 0.997 0.906 0.935 0.916

Trigram 465 235 115.5 24.3 0.5 34.7 0.827 0.996 0.885 0.921 0.903

4 Character Gram 465 235 92.4 7.3 23.6 51.7 0.852 0.797 0.033 0.975 0.855

3 Character Gram 465 235 86.6 7.9 29.4 51.1 0.864 0.747 0.017 0.979 0.796

Trigram 465 80 115.9 19.3 0.1 0.7 0.857 0.999 0.916 0.928 0.923

5 Character Gram 465 80 116 19.3 0 0.7 0.857 1.000 0.921 0.928 0.923

Bigram 465 80 116 19.7 0 0.3 0.855 1.000 0.921 0.924 0.922

4 Character Gram 465 80 116 19.8 0 0.2 0.854 1.000 0.921 0.924 0.921

3 Character Gram 465 80 116 20 0 0 0.853 1.000 0.921 0.921 0.921

Unigram 465 80 116 19.9 0 0.1 0.854 1.000 0.921 0.924 0.921

Trigram 465 1263 0.5 4.7 115.5 311.3 0.077 0.004 0.000 0.017 0.008

Bigram 465 1263 0.2 1.1 115.8 314.9 0.150 0.002 0.000 0.017 0.002

3 Character Gram 465 1263 0 0 116 316 0.000 0.000 0.000 0.000 0.000

4 Character Gram 465 1263 0 0 116 316 0.000 0.000 0.000 0.000 0.000

5 Character Gram 465 1263 0 0.3 116 315.7 0.000 0.000 0.000 0.000 0.000

Unigram 465 1263 0 0 116 316 0.000 0.000 0.000 0.000 0.000

Teens vs. 30s

Teens vs. 40s

Teens vs. 50s

Teens vs. Adults

Teens vs. 20s

 

Table 69.   Naïve Bayes Classifier Results Ranked by Average F-score for Each Classification Task (Laplace 
Smoothing with Punctuation). 
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Table 70.   Naïve Bayes Classifier Results Ranked by Average F-score for Each Classification Task (Laplace 
Smoothing without Punctuation).

Classification

Task
Feature

Teen

Training

Files

Adult

Training

Files

True

Positives

False

Positives

False 

Negatives

True 

Negatives

 

Precision
 Recall

Low

F‐Score

High

F‐Score

Average

F‐Score

Trigram 465 689 3.4 12.2 112.6 159.8 0.182 0.029 0.000 0.127 0.047

Bigram 465 689 0.4 3.8 115.6 168.2 0.079 0.003 0.000 0.033 0.004

3 Character Gram 465 689 0 0 116 172 0.000 0.000 0.000 0.000 0.000

4 Character Gram 465 689 0 0.2 116 171.8 0.000 0.000 0.000 0.000 0.000

5 Character Gram 465 689 0 0.9 116 171.1 0.000 0.000 0.000 0.000 0.000

Unigram 465 689 0 0.1 116 171.9 0.000 0.000 0.000 0.000 0.000

Trigram 465 259 105.2 27.1 10.8 37.9 0.786 0.907 0.440 0.910 0.875

Bigram 465 259 82.2 24.9 33.8 40.1 0.730 0.709 0.146 0.891 0.744

Unigram 465 259 26.7 11.9 89.3 53.1 0.475 0.230 0.000 0.901 0.235

5 Character Gram 465 259 23.7 7.7 92.3 57.3 0.507 0.204 0.000 0.935 0.205

4 Character Gram 465 259 16.7 5.5 99.3 59.5 0.385 0.144 0.000 0.922 0.097

3 Character Gram 465 259 7.8 2.1 108.2 62.9 0.167 0.067 0.000 0.702 0.023

5 Character Gram 465 235 104.6 7.5 11.4 51.5 0.926 0.902 0.405 0.979 0.949

Unigram 465 235 105.1 10.5 10.9 48.5 0.900 0.906 0.338 0.971 0.943

4 Character Gram 465 235 98.9 6.8 17.1 52.2 0.905 0.853 0.081 0.983 0.926

Bigram 465 235 115.6 21.4 0.4 37.6 0.844 0.997 0.898 0.928 0.914

Trigram 465 235 115.2 25.9 0.8 33.1 0.817 0.993 0.880 0.913 0.896

3 Character Gram 465 235 88 6.6 28 52.4 0.873 0.759 0.017 0.983 0.814

5 Character Gram 465 80 116 19 0 1 0.859 1.000 0.921 0.932 0.924

Bigram 465 80 116 19.7 0 0.3 0.855 1.000 0.921 0.924 0.922

4 Character Gram 465 80 116 19.6 0 0.4 0.855 1.000 0.921 0.928 0.922

Trigram 465 80 115.4 19.1 0.6 0.9 0.858 0.995 0.916 0.928 0.921

3 Character Gram 465 80 116 19.9 0 0.1 0.854 1.000 0.921 0.924 0.921

Unigram 465 80 116 19.9 0 0.1 0.854 1.000 0.921 0.924 0.921

Trigram 465 1263 0.6 4 115.4 312 0.130 0.005 0.000 0.049 0.006

Bigram 465 1263 0.2 1.1 115.8 314.9 0.150 0.002 0.000 0.017 0.002

3 Character Gram 465 1263 0 0 116 316 0.000 0.000 0.000 0.000 0.000

4 Character Gram 465 1263 0 0 116 316 0.000 0.000 0.000 0.000 0.000

5 Character Gram 465 1263 0 0.6 116 315.4 0.000 0.000 0.000 0.000 0.000

Unigram 465 1263 0 0 116 316 0.000 0.000 0.000 0.000 0.000

Teens vs. 20s

Teens vs. 30s

Teens vs. 40s

Teens vs. 50s

Teens vs. Adults
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APPENDIX E: SUPPORT VECTOR MACHINE RESULTS 

This appendix contains the Support Vector Machine results.  The results 

for each classification task are ranked by average F-score.  In order to exclude 

outliers, the average F-score was calculated without the highest and lowest F-

score measure from the 10 random test sets.  The lowest and highest F-score 

results, however, are included in the tables as separate columns.  The average 

number of true positives, false positives, true negatives, false negatives, 

precision and recall do not omit the highest/lowest respective value from the 10 

random test set results.  Tables 71–75 display the results for each classification 

task. 

 

 



Feature
Slack

Variable

True

Positives

True

Negatives

False

Positives

False

Negatives
Precision Recall

Low

F‐score

High

F‐score

Average

F‐score

Trigram (25 entropy) 0.000030500 90.1 149.4 37.0 25.9 0.694 0.777 0.000 0.987 0.769

Trigram (15 entropy) 0.000030500 89.7 149.6 36.8 26.3 0.695 0.773 0.000 0.987 0.765

Trigram (5 entropy) 0.000061000 87.3 150.5 35.9 28.7 0.726 0.753 0.000 0.987 0.760

Trigram (50 entropy) 0.000030500 90.9 138.6 47.8 25.1 0.685 0.784 0.000 0.987 0.754

Trigram 0.000030500 90.4 137.1 49.3 25.6 0.675 0.779 0.000 0.987 0.744

Trigram (75 entropy) 0.000030500 90.9 128.4 58.0 25.1 0.676 0.784 0.000 0.987 0.741

Bigram (5 mutual) 0.000030500 76.2 168.2 18.2 39.8 0.726 0.657 0.000 0.991 0.694

Unigram (50 mutual) 0.000030500 76.9 152.8 33.6 39.1 0.705 0.663 0.000 0.987 0.663

Bigram (50 mutual) 0.000030500 72.6 163.2 23.2 43.4 0.705 0.626 0.000 0.966 0.656

Bigram (15 mutual) 0.000030500 73.2 156.2 30.2 42.8 0.674 0.631 0.000 0.862 0.638

Bigram (75 mutual) 0.000030500 75.8 143.0 43.4 40.2 0.670 0.653 0.000 0.938 0.628

Bigram (75 entropy) 0.000030500 75.2 148.2 38.2 40.8 0.642 0.648 0.000 0.987 0.625

Unigram (25 mutual) 0.000030500 70.4 164.8 21.6 45.6 0.662 0.607 0.000 0.963 0.615

Bigram (50 entropy) 0.000030500 77.1 141.2 45.2 38.9 0.619 0.665 0.000 0.987 0.614

Bigram 0.000030500 78.2 137.8 48.6 37.8 0.614 0.674 0.000 0.987 0.611

Trigram (75 mutual) 0.000030500 76.0 123.9 62.5 40.0 0.691 0.655 0.184 0.897 0.609

Bigram (25 entropy) 0.000030500 78.0 130.7 55.7 38.0 0.603 0.672 0.000 0.987 0.597

Bigram (25 mutual) 0.000061000 68.1 166.1 20.3 47.9 0.663 0.587 0.000 0.983 0.591

Bigram (5 entropy) 0.000030500 78.2 119.9 66.5 37.8 0.594 0.674 0.000 0.987 0.585

Bigram (15 entropy) 0.000030500 78.1 119.4 67.0 37.9 0.594 0.673 0.000 0.987 0.584

Trigram (5 mutual) 0.000030500 64.1 153.2 33.2 51.9 0.681 0.553 0.000 0.970 0.581

Trigram (15 mutual) 0.000030500 68.6 146.6 39.8 47.4 0.586 0.591 0.017 0.970 0.576

Unigram (75 mutual) 0.000122070 61.0 139.6 46.8 55.0 0.775 0.526 0.083 0.825 0.551

Unigram (75 entropy) 0.000030500 70.5 122.5 63.9 45.5 0.576 0.608 0.099 0.762 0.545

Trigram (meta‐data) 0.000030500 69.3 132.0 54.4 46.7 0.669 0.597 0.033 0.954 0.544

3 Character Gram 

(meta‐data)
0.000244141 71.8 109.9 76.5 44.2 0.584 0.619 0.014 0.971 0.540

Trigram (50 mutual) 0.000030500 74.6 102.4 84.0 41.4 0.565 0.643 0.065 0.952 0.537

Unigram 0.000030500 73.7 113.1 73.3 42.3 0.551 0.635 0.099 0.762 0.535

Unigram (5 entropy) 0.000030500 73.6 113.1 73.3 42.4 0.551 0.634 0.099 0.762 0.534

Trigram (25 mutual) 0.000030500 61.8 150.2 36.2 54.2 0.618 0.533 0.111 0.940 0.524

Unigram (25 entropy) 0.000030500 73.5 106.0 80.4 42.5 0.540 0.634 0.099 0.762 0.521

Bigram (meta‐data) 0.000061000 64.5 140.1 46.3 51.5 0.602 0.556 0.000 0.946 0.516

Unigram (15 mutual) 0.000030500 67.7 131.4 55.0 48.3 0.625 0.584 0.017 0.963 0.515

Unigram (15 entropy) 0.000030500 73.5 96.6 89.8 42.5 0.532 0.634 0.099 0.762 0.509

Unigram (50 entropy) 0.000030500 73.5 93.8 92.6 42.5 0.529 0.634 0.099 0.762 0.505

Unigram (5 mutual) 0.000061000 61.0 148.7 37.7 55.0 0.682 0.526 0.079 0.978 0.502

3 Character Gram 0.000122070 72.6 90.6 95.8 43.4 0.525 0.626 0.021 0.872 0.494

Unigram (meta‐data) 0.000122070 62.5 132.9 53.5 53.5 0.573 0.539 0.058 0.987 0.483

Lin Features 128.000000000 54.4 92.4 94.0 61.6 0.420 0.469 0.058 0.558 0.468  

Table 71.   Teens Versus 20s Support Vector Machine Results (Ranked by 
Average F-score). 

114 
 



Feature
Slack

Variable

True

Positives

True

Negatives

False

Positives

False

Negatives
Precision Recall

Low

F‐score

High

F‐score

Average

F‐score

Bigram (15 mutual) 0.000976563 109.6 46.2 18.8 6.4 0.880 0.945 0.734 0.991 0.914

Bigram (50 mutual) 0.000244141 111.4 45.0 20.0 4.6 0.878 0.960 0.780 1.000 0.913

Unigram (50 mutual) 0.000488281 104.9 43.2 21.8 11.1 0.865 0.904 0.307 1.000 0.894

Bigram (25 mutual) 0.000488281 111.0 41.2 23.8 5.0 0.857 0.957 0.782 1.000 0.893

Bigram (5 mutual) 0.000488281 107.2 45.7 19.3 8.8 0.876 0.924 0.742 0.996 0.891

Trigram (5 mutual) 0.000488281 103.9 46.2 18.8 12.1 0.880 0.896 0.550 0.987 0.888

Unigram (15 mutual) 0.000488281 99.5 47.3 17.7 16.5 0.884 0.858 0.098 1.000 0.888

Bigram (75 mutual) 0.000061000 109.5 42.5 22.5 6.5 0.862 0.944 0.780 1.000 0.888

Trigram (15 mutual) 0.000244141 105.4 44.8 20.2 10.6 0.870 0.909 0.594 0.982 0.888

Unigram (25 mutual) 0.000488281 96.5 50.3 14.7 19.5 0.894 0.832 0.067 0.978 0.886

Trigram (25 mutual) 0.000122070 112.3 36.6 28.4 3.7 0.829 0.968 0.781 0.975 0.885

Bigram (50 entropy) 0.000122070 97.5 44.7 20.3 18.5 0.819 0.841 0.094 1.000 0.884

Unigram (5 mutual) 0.000488281 99.1 43.9 21.1 16.9 0.807 0.854 0.088 1.000 0.883

Trigram (25 entropy) 0.000030500 101.1 42.1 22.9 14.9 0.761 0.872 0.000 0.991 0.882

Bigram (25 entropy) 0.000122070 97.2 44.7 20.3 18.8 0.819 0.838 0.094 1.000 0.881

Trigram (15 entropy) 0.000030500 101.0 42.1 22.9 15.0 0.761 0.871 0.000 0.991 0.881

Unigram (75 mutual) 0.000488281 104.1 38.4 26.6 11.9 0.841 0.897 0.098 1.000 0.878

Unigram (25 entropy) 0.000488281 99.8 44.1 20.9 16.2 0.845 0.860 0.462 1.000 0.865

Trigram (50 entropy) 0.000030500 102.0 36.7 28.3 14.0 0.731 0.879 0.000 0.991 0.863

Trigram (5 entropy) 0.000030500 101.2 37.7 27.3 14.8 0.733 0.872 0.000 0.991 0.863

Trigram 0.000030500 102.0 35.8 29.2 14.0 0.727 0.879 0.000 0.991 0.860

Trigram (75 entropy) 0.000030500 102.0 35.8 29.2 14.0 0.727 0.879 0.000 0.991 0.860

Bigram (75 entropy) 0.000122070 97.5 39.0 26.0 18.5 0.787 0.841 0.094 1.000 0.860

Unigram (75 entropy) 0.000488281 100.0 42.0 23.0 16.0 0.837 0.862 0.462 1.000 0.858

Unigram (50 entropy) 0.000488281 100.0 42.0 23.0 16.0 0.836 0.862 0.462 1.000 0.858

Bigram (15 entropy) 0.000122070 97.5 38.4 26.6 18.5 0.785 0.841 0.094 1.000 0.858

Bigram (5 entropy) 0.000122070 97.5 38.4 26.6 18.5 0.785 0.841 0.094 1.000 0.858

Unigram (15 entropy) 0.000488281 99.9 41.5 23.5 16.1 0.835 0.861 0.462 1.000 0.856

Unigram 0.000488281 99.6 41.6 23.4 16.4 0.834 0.859 0.462 1.000 0.855

Unigram (5 entropy) 0.000488281 99.6 41.6 23.4 16.4 0.834 0.859 0.462 1.000 0.855

Bigram 0.000122070 96.0 40.0 25.0 20.0 0.790 0.828 0.094 1.000 0.852

Trigram (75 mutual) 0.015625000 94.9 45.0 20.0 21.1 0.764 0.818 0.000 0.996 0.852

Trigram (50 mutual) 0.000030500 100.9 37.3 27.7 15.1 0.810 0.870 0.254 1.000 0.850

3 Character Gram 0.000061000 95.3 40.2 24.8 20.7 0.740 0.822 0.015 1.000 0.839

3 Character Gram 

(meta‐data)
0.000061000 95.4 34.4 30.6 20.6 0.710 0.822 0.015 1.000 0.816

Bigram (meta‐data) 0.000122070 91.1 36.5 28.5 24.9 0.759 0.785 0.097 1.000 0.808

Unigram (meta‐data) 0.000061000 95.4 30.9 34.1 20.6 0.750 0.822 0.295 0.987 0.794

Lin Features 0.000061000 115.0 2.8 62.2 1.0 0.649 0.991 0.777 0.789 0.785

Trigram (meta‐data) 0.000030500 90.5 29.7 35.3 25.5 0.750 0.780 0.050 0.946 0.765  

Table 72.   Teens Versus 30s Support Vector Machine Results (Ranked by 
Average F-score). 
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Feature
Slack

Variable

True

Positives

True

Negatives

False

Positives

False

Negatives
Precision Recall

Low

F‐score

High

F‐score

Average

F‐score

Trigram (75 mutual) 0.000030500 115.4 52.4 6.6 0.6 0.959 0.995 0.808 1.000 0.991

Bigram (75 mutual) 0.000030500 104.6 58.6 0.4 11.4 0.994 0.902 0.461 1.000 0.980

Trigram (25 mutual) 0.000030500 112.4 54.2 4.8 3.6 0.964 0.969 0.836 1.000 0.977

Bigram (50 mutual) 0.000030500 103.6 58.8 0.2 12.4 0.996 0.893 0.430 1.000 0.976

Unigram (75 mutual) 0.000030500 108.6 56.5 2.5 7.4 0.979 0.936 0.710 1.000 0.975

Trigram (15 mutual) 0.000030500 110.3 55.1 3.9 5.7 0.968 0.951 0.792 1.000 0.974

Trigram (50 mutual) 0.000030500 114.1 51.4 7.6 1.9 0.947 0.984 0.836 1.000 0.974

Unigram 0.000030500 103.6 57.7 1.3 12.4 0.987 0.893 0.538 1.000 0.962

Unigram (5 entropy) 0.000030500 103.6 57.7 1.3 12.4 0.987 0.893 0.538 1.000 0.962

Unigram (50 mutual) 0.000030500 101.9 58.1 0.9 14.1 0.989 0.878 0.487 1.000 0.960

Unigram (15 entropy) 0.000030500 103.5 57.4 1.6 12.5 0.985 0.892 0.538 1.000 0.959

Unigram (50 entropy) 0.000030500 103.5 57.3 1.7 12.5 0.984 0.892 0.538 1.000 0.959

Unigram (75 entropy) 0.000030500 103.5 57.3 1.7 12.5 0.984 0.892 0.538 1.000 0.959

Bigram (25 mutual) 0.000061000 108.1 53.5 5.5 7.9 0.965 0.932 0.735 1.000 0.959

Trigram 0.000030500 111.1 52.1 6.9 4.9 0.950 0.958 0.853 1.000 0.957

Trigram (15 entropy) 0.000030500 111.1 52.1 6.9 4.9 0.950 0.958 0.853 1.000 0.957

Trigram (25 entropy) 0.000030500 111.1 52.1 6.9 4.9 0.950 0.958 0.853 1.000 0.957

Unigram (25 entropy) 0.000030500 102.8 57.7 1.3 13.2 0.987 0.886 0.538 1.000 0.957

Trigram (5 entropy) 0.000030500 111.1 52.1 6.9 4.9 0.950 0.958 0.856 1.000 0.957

Trigram (5 mutual) 0.000030500 107.6 56.3 2.7 8.4 0.978 0.928 0.833 1.000 0.956

Trigram (75 entropy) 0.000030500 111.0 51.9 7.1 5.0 0.949 0.957 0.853 1.000 0.956

Trigram (50 entropy) 0.000030500 110.3 52.1 6.9 5.7 0.950 0.951 0.853 1.000 0.953

Bigram (25 entropy) 0.000122070 105.0 54.4 4.6 11.0 0.966 0.905 0.594 1.000 0.952

Bigram 0.000030500 100.1 55.1 3.9 15.9 0.932 0.863 0.094 1.000 0.952

Bigram (50 entropy) 0.000030500 100.1 55.1 3.9 15.9 0.932 0.863 0.094 1.000 0.952

Bigram (15 entropy) 0.000122070 104.7 54.3 4.7 11.3 0.965 0.903 0.568 1.000 0.952

Bigram (5 entropy) 0.000122070 104.7 54.1 4.9 11.3 0.963 0.903 0.568 1.000 0.951

Bigram (75 entropy) 0.000030500 100.1 54.7 4.3 15.9 0.929 0.863 0.094 1.000 0.950

Bigram (15 mutual) 0.000488281 100.9 57.9 1.1 15.1 0.989 0.870 0.541 1.000 0.947

Unigram (25 mutual) 0.000244141 92.6 57.4 1.6 23.4 0.967 0.798 0.127 1.000 0.910

Unigram (15 mutual) 0.000244141 92.6 58.2 0.8 23.4 0.993 0.798 0.173 1.000 0.910

3 Character Gram 0.000244141 96.5 52.6 6.4 19.5 0.931 0.832 0.400 1.000 0.907

3 Character Gram 

(meta‐data)
0.000244141 96.5 52.6 6.4 19.5 0.931 0.832 0.400 1.000 0.907

Bigram (5 mutual) 0.000244141 97.1 56.8 2.2 18.9 0.978 0.837 0.667 1.000 0.902

Bigram (meta‐data) 0.000030500 95.1 52.1 6.9 20.9 0.931 0.820 0.378 0.996 0.896

Unigram (meta‐data) 0.000030500 93.1 53.5 5.5 22.9 0.942 0.803 0.439 1.000 0.877

Unigram (5 mutual) 0.000030500 89.6 54.9 4.1 26.4 0.970 0.772 0.188 1.000 0.877

Trigram (meta‐data) 0.000030500 91.9 47.7 11.3 24.1 0.902 0.792 0.430 1.000 0.846

Lin Features 0.125000000 111.3 17.3 41.7 4.7 0.728 0.959 0.796 0.867 0.827  

Table 73.   Teens Versus 40s Support Vector Machine Results (Ranked by 
Average F-score). 
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Feature
Slack

Variable

True

Positives

True

Negatives

False

Positives

False

Negatives
Precision Recall

Low

F‐score

High

F‐score

Average

F‐score

Trigram (50 mutual) 0.000030500 112.0 15.1 20.1 4.0 0.910 0.966 0.589 0.996 0.958

Trigram (25 mutual) 0.000030500 111.3 14.6 20.6 4.7 0.909 0.959 0.583 0.996 0.953

Trigram (75 mutual) 0.000030500 102.6 29.2 6.0 13.4 0.931 0.884 0.366 1.000 0.951

Trigram (15 mutual) 0.000030500 110.3 24.3 10.9 5.7 0.927 0.951 0.736 0.996 0.951

Bigram (25 entropy) 0.001953125 103.5 27.8 7.4 12.5 0.923 0.892 0.388 0.996 0.946

Unigram (75 mutual) 0.000061000 106.8 28.0 7.2 9.2 0.943 0.921 0.643 1.000 0.945

Bigram (75 mutual) 0.000030500 104.9 29.8 5.4 11.1 0.955 0.904 0.594 1.000 0.945

Trigram (5 mutual) 0.000030500 108.1 15.4 19.8 7.9 0.914 0.932 0.583 0.996 0.935

3 Character Gram 

(meta‐data)
0.000976563 105.9 26.7 8.5 10.1 0.934 0.913 0.635 1.000 0.932

Trigram 0.000030500 96.4 32.6 2.6 19.6 0.975 0.831 0.202 1.000 0.925

Lin Features 0.000030500 115.8 1.8 33.4 0.2 0.814 0.998 0.589 0.928 0.922

Bigram (50 entropy) 0.000122070 96.5 30.6 4.6 19.5 0.942 0.832 0.245 0.996 0.921

Bigram (15 entropy) 0.001953125 102.8 21.7 13.5 13.2 0.889 0.886 0.388 0.996 0.917

Unigram (50 entropy) 0.000061000 97.6 31.4 3.8 18.4 0.951 0.841 0.333 1.000 0.914

Bigram (50 mutual) 0.000030500 103.6 23.7 11.5 12.4 0.922 0.893 0.627 0.996 0.913

Bigram (15 mutual) 0.000122070 98.5 29.3 5.9 17.5 0.946 0.849 0.487 1.000 0.913

Bigram 0.001953125 103.2 18.3 16.9 12.8 0.880 0.890 0.388 0.996 0.910

Trigram (25 entropy) 0.000030500 96.7 26.1 9.1 19.3 0.938 0.834 0.202 1.000 0.903

Unigram 0.000976563 103.3 19.2 16.0 12.7 0.908 0.891 0.657 0.991 0.900

Unigram (5 entropy) 0.000976563 103.2 19.1 16.1 12.8 0.908 0.890 0.655 0.991 0.899

Unigram (15 entropy) 0.000976563 104.0 13.4 21.8 12.0 0.898 0.897 0.590 0.991 0.898

Unigram (25 entropy) 0.000976563 98.7 27.6 7.6 17.3 0.933 0.851 0.636 0.991 0.898

Bigram (5 entropy) 0.000030500 103.4 15.5 19.7 12.6 0.912 0.891 0.586 1.000 0.896

Trigram (15 entropy) 0.000030500 95.9 25.9 9.3 20.1 0.936 0.827 0.202 1.000 0.896

Bigram (75 entropy) 0.001953125 102.9 11.8 23.4 13.1 0.868 0.887 0.388 0.991 0.895

Unigram (50 mutual) 0.000061000 103.3 14.3 20.9 12.7 0.904 0.891 0.522 0.996 0.894

3 Character Gram 0.000488281 98.0 27.2 8.0 18.0 0.930 0.845 0.519 0.967 0.892

Trigram (5 entropy) 0.000030500 95.8 16.6 18.6 20.2 0.914 0.826 0.202 1.000 0.872

Bigram (25 mutual) 0.000030500 90.3 29.8 5.4 25.7 0.919 0.778 0.050 0.996 0.871

Trigram (50 entropy) 0.000030500 95.5 16.6 18.6 20.5 0.915 0.823 0.202 1.000 0.870

Trigram (75 entropy) 0.000030500 94.4 19.0 16.2 21.6 0.921 0.814 0.202 1.000 0.865

Unigram (25 mutual) 0.000030500 91.3 25.3 9.9 24.7 0.916 0.787 0.159 0.996 0.848

Unigram (5 mutual) 0.000030500 91.9 16.7 18.5 24.1 0.911 0.792 0.188 0.991 0.847

Unigram (meta‐data) 0.000030500 86.6 26.6 8.6 29.4 0.882 0.747 0.092 0.996 0.823

Unigram (75 entropy) 0.000030500 92.4 13.9 21.3 23.6 0.886 0.797 0.188 0.996 0.823

Unigram (15 mutual) 0.000030500 90.4 15.7 19.5 25.6 0.872 0.779 0.162 0.996 0.805

Bigram (meta‐data) 0.000030500 89.9 13.6 21.6 26.1 0.887 0.775 0.435 1.000 0.800

Trigram (meta‐data) 0.000030500 82.2 15.3 19.9 33.8 0.899 0.709 0.307 0.983 0.760

Bigram (5 mutual) 0.000030500 84.7 15.1 20.1 31.3 0.867 0.730 0.120 1.000 0.738  

Table 74.   Teens Versus 50s Support Vector Machine Results (Ranked by 
Average F-score). 
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Positives
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F‐score
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F‐score

Unigram (5 mutual) 0.000030500 89.5 253.7 32.7 26.5 0.846 0.772 0.114 0.991 0.786

Bigram (15 mutual) 0.000030500 95.2 231.9 54.5 20.8 0.709 0.821 0.033 0.996 0.766

Bigram (5 mutual) 0.003906250 95.2 195.8 90.6 20.8 0.686 0.821 0.038 1.000 0.757

Trigram 0.000061000 100.9 196.3 90.1 15.1 0.647 0.870 0.025 1.000 0.756

Trigram (5 entropy) 0.000061000 100.9 195.0 91.4 15.1 0.644 0.870 0.025 1.000 0.754

Trigram (75 entropy) 0.000061000 100.7 196.3 90.1 15.3 0.646 0.868 0.026 1.000 0.753

Trigram (50 entropy) 0.000061000 99.3 196.0 90.4 16.7 0.645 0.856 0.026 1.000 0.745

Trigram (5 mutual) 0.000030500 99.2 201.6 84.8 16.8 0.682 0.855 0.167 0.991 0.743

Trigram (15 entropy) 0.000061000 97.9 195.8 90.6 18.1 0.646 0.844 0.025 1.000 0.737

Unigram (15 mutual) 0.000030500 87.5 249.3 37.1 28.5 0.742 0.754 0.000 1.000 0.735

Trigram (25 entropy) 0.000122070 95.3 181.7 104.7 20.7 0.654 0.822 0.000 1.000 0.734

Trigram (50 mutual) 0.000030500 96.5 204.6 81.8 19.5 0.778 0.832 0.294 0.991 0.732

Bigram (25 mutual) 0.000030500 98.6 201.6 84.8 17.4 0.648 0.850 0.031 1.000 0.729

Bigram (50 mutual) 0.000244141 94.2 169.6 116.8 21.8 0.671 0.812 0.014 1.000 0.728

Trigram (15 mutual) 0.000030500 93.1 206.5 79.9 22.9 0.686 0.803 0.044 1.000 0.721

Unigram (75 mutual) 0.000030500 90.5 224.8 61.6 25.5 0.689 0.780 0.000 1.000 0.720

Bigram (75 mutual) 0.000030500 99.1 187.3 99.1 16.9 0.631 0.854 0.000 1.000 0.716

Trigram (25 mutual) 0.000030500 96.2 201.8 84.6 19.8 0.749 0.829 0.294 0.987 0.708

Trigram (75 mutual) 0.000030500 92.5 203.8 82.6 23.5 0.782 0.797 0.294 1.000 0.705

Bigram (25 entropy) 0.000030500 96.0 196.3 90.1 20.0 0.727 0.828 0.294 1.000 0.700

Unigram (25 mutual) 0.000030500 85.0 238.8 47.6 31.0 0.702 0.733 0.000 1.000 0.698

Bigram (50 entropy) 0.000030500 96.5 193.4 93.0 19.5 0.723 0.832 0.294 1.000 0.698

Bigram (5 entropy) 0.000030500 96.0 191.9 94.5 20.0 0.722 0.828 0.294 1.000 0.694

Bigram 0.000030500 96.7 188.4 98.0 19.3 0.716 0.834 0.294 1.000 0.692

Bigram (75 entropy) 0.000030500 96.1 192.3 94.1 19.9 0.711 0.828 0.294 1.000 0.688

Bigram (15 entropy) 0.000030500 96.0 190.3 96.1 20.0 0.710 0.828 0.294 1.000 0.686

Unigram (50 mutual) 0.000030500 85.5 229.7 56.7 30.5 0.683 0.737 0.000 0.996 0.679

Unigram (50 entropy) 0.000030500 85.0 228.9 57.5 31.0 0.713 0.733 0.174 1.000 0.670

Unigram (5 entropy) 0.000030500 84.7 229.1 57.3 31.3 0.707 0.730 0.138 0.996 0.670

Unigram (15 entropy) 0.000030500 84.5 229.0 57.4 31.5 0.702 0.728 0.112 0.996 0.670

Unigram 0.000030500 84.6 229.1 57.3 31.4 0.706 0.729 0.138 0.996 0.669

Unigram (25 entropy) 0.000030500 82.8 228.9 57.5 33.2 0.702 0.714 0.112 0.996 0.660

Unigram (75 entropy) 0.000030500 84.5 227.0 59.4 31.5 0.692 0.728 0.138 0.996 0.659

Unigram (meta‐data) 0.000030500 81.3 224.7 61.7 34.7 0.680 0.701 0.067 1.000 0.640

Trigram (meta‐data) 0.000244141 91.1 170.0 116.4 24.9 0.540 0.785 0.029 0.996 0.640

Bigram (meta‐data) 0.000030500 85.8 189.7 96.7 30.2 0.651 0.740 0.191 0.996 0.584

3 Character Gram 

(meta‐data)
0.001953125 72.7 192.9 93.5 43.3 0.633 0.627 0.067 1.000 0.543

3 Character Gram 0.001953125 72.7 191.5 94.9 43.3 0.622 0.627 0.067 0.960 0.541

Lin Features 256.000000000 41.9 233.0 53.4 74.1 0.432 0.361 0.199 0.921 0.327  

Table 75.   Teens Versus Adults Support Vector Machine Results (Ranked by 
Average F-score). 
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APPENDIX F: LIN FEATURES 

This appendix contains the feature dictionary for the Lin Feature Set [5].  

Her feature vector contains not only the average sentence length and average 

number of word types, but it also contains the type count and token count for 

each punctuation mark/emoticon.  Figure 7 contains the Lin feature dictionary. 

 

! : :tongue: " [ \
# :-@ ; $ ] ~
% :-( ;-) ( ^ Average Sentence Length
& :-) < ) | Average Number of Word Types

:-o = * _
, :beer: > + `
- :blush: >:-> . {
/ :love: @ ? }

 

Figure 7.   Lin Feature Dictionary [After 5]. 
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APPENDIX G: EMOTICON DICTIONARY 

This appendix contains the emoticon dictionary used.  All, but four 

emoticons are from the Wikipedia website [23].  The four emoticons, which begin 

and end with a colon, are from the built-in emoticons in the NPS Chat Corpus.  

Figure 8 displays the emoticon dictionary used in this study. 

 

:) 8) :O :-D >:) 8-) (=C
:-) ;) :/ :S }:) 8-0 >o>
: )̂ *) :-/ :s 0:) :'-( <o<
=) X( :-\ ô) <3 :-* O<3= 
B) ( | ) :\ :3 x3 X-( :beer:
c8 :( 8/ >:3 </3 :-& :blush:
cB 8c 8\ :E :'( ; )̂ :love:
=] Bc >/ :F :,( :-} :tongue:
:] B( >\ :X :_( <:}
x] |8c :| :-* :*( >:L
:D |8C :l >:O :…( :9
e.e :[ xP XO @}->-- *\o/*
o.oU :P XP :-(o) -- -̂-@ >:D
38* :p xD >:( %-) >=D
D: |D XD >[ %-( :0->-<|:

 

Figure 8.   Emoticon Dictionary. 
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APPENDIX H: PUNCTUATION DICTIONARY 

This appendix contains the punctuation dictionary used.  The punctuation 

marks are the non-alphanumeric keys on the QWERTY keyboard.  Figure 9 

displays the punctuation dictionary used in this study. 

 

! / " ? {
# : $ ] }
% ; ( [ ~
& < ) ^ \
' = * |
, > + _
- @ . `

 

Figure 9.   Punctuation Dictionary. 
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